We investigate some preservation properties of two nonparametric classes of survival distributions and their duals, under appropriate reliability operations. The aging properties defining these nonparametric classes are based on comparing the mean life of a new unit to the mean residual life function of the asymptotic remaining survival time of the unit under repeated perfect repairs. They are motivated from a point of view that realistic notions of degradation, applicable to repairable systems, should be based on contrasting some aspect of the remaining life of a repairable unit (under a given repair strategy, such as renewals) to the life of a new unit.
We investigate some preservation properties of two nonparametric classes of survival distributions and their duals, under appropriate reliability operations. The aging properties defining these nonparametric classes are based on comparing the mean life of a new unit to the mean residual life function of the asymptotic remaining survival time of the unit under repeated perfect repairs. They are motivated from a point of view that realistic notions of degradation, applicable to repairable systems, should be based on contrasting some aspect of the remaining life of a repairable unit (under a given repair strategy, such as renewals) to the life of a new unit.
summnryRecently Bmm (1993) considered an efficient estimation of random coefficient model based on survey data. The main objective of this paper is to construct one sided test for testing equicorrelation coefficient in presence of random coefficients using optimal testing procedure. The test statistic is a ratio of quadratic forms in normal variables which is most powerful and point optimal invariant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.