In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling.
In this paper, we propose a robust control methodology based on high order sliding mode (HOSM) for control of the leg power in FES-Cycling. A major obstacle to the development of control systems for functional electrical stimulation (FES) has been the highly non-linear, time-varying properties of neuromusculoskeletal systems. A useful and powerful control scheme to deal with the uncertainties, nonlinearities, and bounded external disturbances is the sliding mode control (SMC). The main drawback of the classical sliding mode is mostly related to the so-called chattering which is dangerous for FES applications. To avoid chattering, HOSM approaches were proposed. Keeping the main advantages of the original approach, at the same time they totally remove the chattering effect and provide for even higher accuracy in realization. The results of simulation studies and experiments on two paraplegic subjects show the superior performance of the leg power control during different conditions of operation using HOSM control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.