Many important imaging applications generate a sequence of images that are (or can be made to be) a spatially-invariant image sequence with linearly-additive contributions from the components that form the images. They include functional images in nuclear medicine, multiparameter MR imaging, multi-energy x-ray imaging for DR and CT, and multispectral satellite images. Recent results in the modeling and analysis of linearly-additive spatially-invariant image sequences are based on the inherent structure of such images, and can be used to achieve significant data compression for image storage and still provide good reconstruction. The technique is applied here to a human renogram, with compression of a very noisy 180-image sequence to a 4-image set. The resulting reconstruction illustrates the potential of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.