SignificanceThe large-scale circulation (LSC) is the key dynamical feature of turbulent thermal convection. It is the underlying structure that shapes the appearance of geo- and astrophysical systems, such as the solar granulation or cloud streets, and the cornerstone of theoretical models. Our laboratory-numerical experiments reveal that the LSC can perform a fully 3D motion resembling a twirling jump rope. The discovery of this LSC mode implies that the currently accepted paradigm of a quasi-planar oscillating LSC needs to be augmented. Moreover, it provides an important link between studies in confined geometries used in experiments and simulations and the effectively unconfined fluid layers in natural settings where an agglomeration of LSCs forms larger patterns.
Longitudinal libration corresponds to the periodic oscillation of a body’s rotation rate and is, along with precessional and tidal forcings, a possible source of mechanically-driven turbulence in the fluid interior of satellites and planets. In this study, we present a combination of direct numerical simulations and laboratory experiments, modeling this geophysically relevant mechanical forcing. We investigate the fluid motions inside a longitudinally librating ellipsoidal container filled with an incompressible fluid. The elliptical instability, which is a triadic resonance between two inertial modes and the oscillating base flow with elliptical streamlines, is observed both numerically and experimentally. The large-scale inertial modes eventually lead to small-scale turbulence, provided that the Ekman number is small enough. We characterize this transition to turbulence as additional triadic resonances develop while also investigating the properties of the turbulent flow that displays both intermittent and sustained regimes. These turbulent flows may play an important role in the thermal and magnetic evolution of bodies subject to mechanical forcing, which is not considered in standard models of convectively driven magnetic field generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.