InGaN/GaN multiple quantum well (MQW) structures suffer from a high amount of compressive strain in the InGaN wells and the accompanied piezoelectric field resulting in both a blue shift in emission and a reduction of emission intensity. We report the growth of InxGa1−xN/GaN “strain-balanced” multiple quantum wells (SBMQWs) grown on thick InyGa1−yN templates for x > y by metal organic chemical vapor deposition. SBMQWs consist of alternating layers of InxGa1−xN wells and GaN barriers under compressive and tensile stress, respectively, which have been lattice matched to a thick InyGa1−yN template. Growth of the InyGa1−yN template is also detailed in order to achieve thick, relaxed InyGa1−yN grown on GaN without the presence of V-grooves. When compared to conventional InxGa1−xN/GaN MQWs grown on GaN, the SBMQW structures exhibit longer wavelength emission and higher emission intensity for the same InN mole fraction due to a reduction in the well strain and piezoelectric field. By matching the average lattice constant of the MQW active region to the lattice constant of the InyGa1−yN template, essentially an infinite number of periods can be grown using the SBMQW growth method without relaxation-related effects. SBMQWs can be utilized to achieve longer wavelength emission in light emitting diodes without the use of excess indium and can be advantageous in addressing the “green gap.”
The mechanism behind the improved light emission properties of semipolar and nonpolar InGaN/GaN multiple quantum wells (MQWs) conformally grown over n-GaN nanowires (NWs) was studied using variable-temperature photoluminescence and time-resolved photoluminescence (TRPL). A reduced internal polarization electric field was found to account for the observed enhancement in the radiative recombination rate and internal quantum efficiency of the MQWs on NWs. Additionally, the excitation-dependent TRPL results indicate a significantly depressed Auger recombination in MQWs grown on NWs that can be attributed to the feature of ultralow dislocation density of the MQWs grown over GaN nanostructures.
We demonstrate a light-emitting diode (LED) structure with multiple quantum wells (MQWs) conformally grown on semipolar and nonpolar plane facets of n-GaN nanowires (NWs), followed by deposition of fully coalesced p-GaN on these nanowires. Overgrowth on the nanowires’ tips results in inclusion of high density voids, about one micron in height, in the GaN film. The light output intensity of NWs LEDs is more than three times higher than corresponding c-plane LEDs grown simultaneously. We believe this results from a reduced defect density, increased effective area of conformally grown MQWs, absence of polar plane orientation, and improved light extraction.
We demonstrate gallium nitride (GaN) nanowires formation by controlling the selective and anisotropic etching of N-polar GaN in hot phosphoric acid. Nanowires of ∼109/cm,2 total height of ∼400 nm, and diameters of 170–200 nm were obtained. These nanowires have both non-polar {11¯00}/ {112¯0} and semi-polar {1011¯} facets. X–Ray Diffraction characterization shows that screw dislocations are primarily responsible for preferential etching to create nanowires. Indium gallium nitride multi-quantum wells (MQWs) grown on these GaN nanowires showed a blue shift in peak emission wavelength of photoluminescence spectra, and full width at half maximum decreased relative to MQWs grown on planar N-polar GaN, respectively.
We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.