We have developed a technique for defect reduction in GaN epitaxial films grown on sapphire substrates. This technique relies on the generation of high densities of embedded microvoids (∼108/cm2), a few microns long and less than a micron in diameter. These voids are located near the sapphire substrate, where high densities of dislocations are present. Network of embedded voids offer free surfaces that act as dislocation sinks or termination sites for the dislocations generated at the GaN/sapphire interface. Both transmission electron and atomic force microscopy results confirm the uniform reduction of the dislocation density by two orders of magnitude.
Gamma‐rays (γ‐rays), wherever present, e.g., in medicine, nuclear environment, or homeland security, due to their strong impact on biological matter, should be closely monitored. There is a need for simple, sensitive γ‐ray detectors at affordable prices. Here, it is shown that γ‐ray detectors based on crystals of methylammonium lead tribromide (MAPbBr3) ideally meet these requirements. Specifically, the γ‐rays incident on a MAPbBr3 crystal generates photocarriers with a high mobility‐lifetime product, allowing radiation detection by photocurrent measurements at room temperatures. Moreover, the MAPbBr3 crystal‐based detectors, equipped with improved carbon electrodes, can operate at low bias (≈1.0 V), hence being suitable for applications in energy‐sparse environments, including space. The γ‐ray detectors reported herein are exposed to radiation from a 60Co source at dose rates up to 2.3 Gy h−1 under ambient conditions for over 100 h, without any sign of degradation. The excellent radiation tolerance stems from the intrinsic structural plasticity of the organic–inorganic halide perovskites, which can be attributed to a defect‐healing process by fast ion migration at the nanoscale level. The sensitivity of the γ‐ray detection upon volume is tested for MAPbBr3 crystals reaching up to 1000 cm3 (3.3 kg in weight) grown by a unique crystal growth technique.
We report on the electrical field control of ferromagnetism ͑FM͒ at room temperature in III-N dilute magnetic semiconductor ͑DMS͒ films. A GaMnN layer was grown on top of an n-GaN substrate and found to be almost always paramagnetic. However, when grown on a p-type GaN layer, a strong saturation magnetization ͑M s ͒ was observed. This FM in GaMnN can be controlled by depletion of the holes in the GaMnN/p-GaN/n-GaN multilayer structures. We have demonstrated the dependence of the FM on the thickness of the p-GaN in this heterostructure and on the applied bias to the GaN p-n junction. The M s was measured by an alternating gradient magnetometer ͑AGM͒ and a strong correlation between the hole concentration near the GaMnN/p-GaN interface and the magnetic properties of the DMS was observed. At room temperature an anomalous Hall effect was measured for zero bias and an ordinary Hall effect for reverse bias in a fully depleted p-GaN layer. This is in close agreement with the AGM measurement results.
Abstract-The present article is an overview of developments and results regarding neutron noise measurements in current mode at the CROCUS zero power facility. Neutron noise measurements offer a non-invasive method to determine kinetic reactor parameters such as the prompt decay constant at criticality α = βeff / Λ, the effective delayed neutron fraction βeff, and the mean generation time Λ for code validation efforts. At higher detection rates, i.e. above 2×10 4 cps in the used configuration at 0.1 W, the previously employed pulse charge amplification electronics with BF3 detectors yielded erroneous results due to dead time effects. Future experimental needs call for higher sensitivity in detectors, higher detection rates or higher reactor powers, and thus a generally more versatile measurement system. We, therefore, explored detectors operated with current mode acquisition electronics to accommodate the need. We approached the matter in two ways: 1) By using the two compensated , also within 1σ agreement. The improvements to previous neutron noise measurements include shorter measurement durations that can achieve comparable statistical uncertainties and measurements at higher detection rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.