This paper studies the influence of fabric's structure on the thermal and moisture management properties of knitted fabrics made of two types of yarns with thermo-regulating effect: Coolmax ® and Outlast ®. The main purpose of this study was the selection of the most adequate fabric, to be used in summer and winter sportswear. The results demonstrated that some properties, such as, thermal properties, diffusion ability, air and water vapor permeability are influenced by both raw material type and knitted structure parameters. Wicking ability is influenced to a greater extent by the knitted structure, while the drying ability is primarily determined by raw material and to a lesser extent by the knitted structure parameters. Outlast ® fabrics are preferred candidates for warmer climate sportswear, particularly due to their lower thermal resistance, higher thermal conductivity and absorptivity, air and water vapor permeability. When considering sportswear for colder weather, Coolmax ® based structures seem to be the best choice. These findings are an important tool in the design of a sportswear product tailored to the different body areas thermal and moisture management requirements.
Single polymer composites (SPCs) based on polyamide 6 (PA6) were prepared by in-mold activated anionic ring-opening polymerization (AAROP) of caprolactam in the presence of PA6 textile fibers. The influence of the reinforcing fibers content, their surface treatment, as well as of the temperature of AAROP upon the morphology, crystalline structure, and mechanical properties of the resulting SPCs was followed. The presence of oriented transcrystalline layer (TCL) on the surface of the reinforcing fibers was demonstrated by means of microscopy methods. Its orientation and polymorph structure were determined by synchrotron wide-angle X-ray scattering. Studies on the mechanical behavior in tension of the SPCs showed a well-expressed growth of the stress at break (70-80 %) and deformation at break (up to 150-190 %) in composites with 15-20 wt% of reinforcements. The best mechanical properties were found in SPCs whose reinforcing fibers were solvent-pretreated prior to AAROP in order to remove the original finish. In these samples a stronger adhesion at the fiber/matrix interface was proved by scanning electron microscopy of cryofractured samples. This effect was related to a thinner TCL in which the α-to-γ polymorph transition is impeded.
This paper gives an overview of technologies and results of integration and test of textile integrated sensors and electrodes for monitoring of biosignals (electrocardiographic -ECG and electromyographic -EMG), breathing and moisture. Using a seamless jacquard knitting machine, it is possible to integrate these sensors and electrodes directly into the fabrics, which can then be used in clothing for monitoring of elderly people, in sports or in hazardous occupations. The total integration of the sensing elements and connections into the garment presents great advantages in physical as well as psychological comfort of the user. It has been shown that the measurements are of adequate quality for most of the applications. In some cases, as is the case of ECG and EMG, signals acquired are similar to those obtained using conventional electrodes.
Your article is protected by copyright and all rights are held exclusively by Springer Nature B.V.. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.