In order to study the long-term stability of fin whale (Balaenoptera physalus) singing behavior, the frequency and inter-pulse interval of fin whale 20 Hz vocalizations were observed over 10 years from 2003–2013 from bottom mounted hydrophones and seismometers in the northeast Pacific Ocean. The instrument locations extended from 40°N to 48°N and 130°W to 125°W with water depths ranging from 1500–4000 m. The inter-pulse interval (IPI) of fin whale song sequences was observed to increase at a rate of 0.54 seconds/year over the decade of observation. During the same time period, peak frequency decreased at a rate of 0.17 Hz/year. Two primary call patterns were observed. During the earlier years, the more commonly observed pattern had a single frequency and single IPI. In later years, a doublet pattern emerged, with two dominant frequencies and IPIs. Many call sequences in the intervening years appeared to represent a transitional state between the two patterns. The overall trend was consistent across the entire geographical span, although some regional differences exist. Understanding changes in acoustic behavior over long time periods is needed to help establish whether acoustic characteristics can be used to help determine population identity in a widely distributed, difficult to study species such as the fin whale.
[1] Drilling in the Cascadia accretionary complex enable us to evaluate the contribution of dehydration reactions and gas hydrate dissociation to pore water freshening. The observed freshening with depth and distance from the prism toe is consistent with enhanced conversion of smectite to illite, driven by increase in temperature and age of accreted sediments. Although they contain gas hydrate -as evidenced by discrete low chloride spikes-the westernmost sites drilled on Hydrate Ridge show no freshening trend with depth. Strontium data reveal that all the mélange samples contain deep fluids modified by reaction with the subducting oceanic crust. Thus we infer that, at the westernmost sites, accretion is too recent for the sediments to have undergone significant illitization. Our data demonstrate that a smooth decrease in dissolved chloride with depth cannot generally be used to infer the presence or to estimate the amount of gas hydrate in accretionary margins.
Asperities are patches where the fault surfaces stick until they break in earthquakes. Locating asperities and understanding their causes in subduction zones is challenging because they are generally located offshore. We use seismicity, interseismic and coseismic slip, and the residual gravity field to map the asperity responsible for the 2014 M8.1 Iquique, Chile, earthquake. For several years prior to the mainshock, seismicity occurred exclusively downdip of the asperity. Two weeks before the mainshock, a series of foreshocks first broke the upper plate then the updip rim of the asperity. This seismicity formed a ring around the slip patch (asperity) that later ruptured in the mainshock. The asperity correlated both with high interseismic locking and a circular gravity low, suggesting that it is controlled by geologic structure. Most features of the spatiotemporal seismicity pattern can be explained by a mechanical model in which a single asperity is stressed by relative plate motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.