Аннотация. Задача создания технологии упрочнения эпоксидной смолы (ЭС) и углепластика актуальна для многих разделов техники: космической, авиационной, оборонной, автомобильной и др. Вопрос решается многочисленными приемами модификации ЭС, компонентов углепластика. Модификация ЭС осуществляется путем ввода различных химических соединений. Одним из методов упрочнения углепластика является модификация пластификаторами (трикрезилфосфат, олеиновая кислота) или термопластами (полисульфон, поликарбонат, полистирол, ударопрочный полистирол). В работе собраны имеющиеся в литературе экспериментальные данные по влиянию различных видов модификаторов на прочность ЭС и углепластика. Проанализирован механизм модифицирования ЭС и углепластика пластификаторами и термопластами. Введение пластификаторов в качестве модификаторов ЭС приводит к улучшению ударной вязкости в 2 раза. Оптимальный ввод пластификаторов в ЭС составляет 15 % и зависит от полноты растворимости в связующем, дальнейшее увеличение ввода пластификатора приводит к снижению прочности материала. Модификация термопластами углепластика может привести к улучшению прочности на сжатие на 20% и ударной вязкости в 2 раза. При введении термопластов свыше 20% в углепластик показатели прочности снижаются. Полученные данные необходимы для разработки отечественной технологии производства ударопрочных углепластиков. Ключевые слова: эпоксидная смола, модификаторы, пластификаторы, термопласты, термообработка, ударная вязкость, прочность.Мустафа Л.М. -Ph.D. студент, старший научный сотрудник в АО «Национальном центре космических исследований и технологий», Алматы, Казахстан. ORCID ID: 0000-0002-9779-0007.
Abstract. Epoxy resin (ER) and composite materials based on it play an important role in engineering and technologies. The wide use of epoxy resins derived from their strength and unique combination of performance characteristics. The article considers 2 aspects influencing the strength of ER: rates of strain and modification of ER by the carbon nanoparticles (CNT). The experiments were conducted on the ER of "Etal" brand and "Etal Inject-T" hardener. The strain of samples was carried out at speeds of 1 mm/min, 2 mm/min, 5 mm/min and 20 mm/min. The experiments showed that the stress-strain curve consists of three successive zones-elastic, plastic and elastic-plastic strain at small strain rates of 1-5 mm/min. With increasing of strain rate the zone of plastic strain is gradually transformed in elastic-plastic, the average modulus of elasticity increases. At the strain rate above the critical value (about 20 mm/min.) the zones of plastic and elastic-plastic strain disappear, only the zone of elastic strain remains, while the sample is destroyed by the formation of cracks and chips. The initial and functionalized CNTs of "Taunit-M" brand were used in the experiments. It is found that the initial CNT, introduced in ER do not affect the course of the stressstrain curve, and functionalized CNT with a mass content of 0.05% give different effect on the strain zones: the effect is not felt in the zone of elastic strains, give hardening up to 25% in the plastic zones and elastic-plastic strain. With the increase in input of functionalized CNTs up to 0.2%, the hardening effect of ER was reduced almost in 2 times in the zones of plastic and elasticplastic strain.
The epoxy resin in the form of Etal Inject-T compound, Sigratex KDK carbon fabric, Taunit-M carbon nanotubes conditionally named as CNT-1, as well as functionalized (modified) variety of them by grafting to the surface of new chemical groups: carboxylated ‒ CNT-2, carboxyl-hydroxylated ‒ CNT-3, amidated ‒ CNT-4 were used in the work. The experiments were performed on the compression strength and bending strength of the samples. The injection of CNT-1 into epoxy resin or carbon fiber reinforced plastic did not produce the hardening. The injection of 0.05% of CNT-2 into the epoxy resin had the following effect: there is no influence in the area of quasielastic strains, the hardening was up to 25% in the areas of plastic and elastic-plastic strain. The injection of 0.15% of functionalized carbon nanotubes into the carbon fiber reinforced plastic produced the hardening for compression with CNT-2 ‒ 6%, CNT-3 ‒ 12%, CNT-4 – 17%, for bending – CNT-2 – 44%, CNT-3 – 59%, CNT-4 – 132%. It is established that with an increase in the strain rate of epoxy resin from 1 to 5 mm/min the areas of plastic and elastic-plastic strain gradually are reduced, there is only quasielastic strain with brittle fracture at 20 mm/ min, this value can be accepted as its strength characteristic. With an increase in the strain rate of carbon fiber reinforced plastic from 1 to 20 mm/min the compression strength gradually increases from 398 MPa to 425 MPa, and then stabilizes.
Currently, the production and use of military UAVs in the direction of robotic complexes is actively developing. The purpose and use of military UAVs differ from civilian ones, based on two functions: reconnaissance purpose and a carrier of a warhead. The specifics of military UAVs are their invisibility to enemy radars and ensuring stable transmission of information from the command post. For these purposes, first of all, the UAV material must have the properties of radio transparency. For the production of UAV hulls, power elements, high-strength PCM are needed, which include organoplastics, carbon fiber, fiber glass. The choice of materials for parts of components and assemblies of aviation equipment depends on their operating conditions: operating loads, material properties. Organoplastics (OP) fully meets these requirements among polymer composite materials (PCM). OP have high strength properties along with low dielectric losses (radio transparency) compared to other fiber composites. This paper presents an overview of studies of dielectric and strength properties, as well as ways to improve the mechanical properties of organoplastics. The analysis of the work has shown that for radiotransparent organoplasty, the optimal frequency range of permittivity is 1kHz-12 GHz. The ultimate strength of organoplastics varies in the range from 320 MPa to 1 GPa. The possibilities of increasing the strength of aramid fibers and ways of modifying organoplastics epoxy resins are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.