Digital obesity, or information overload, is a widely recognized yet largely unsolved problem. Lack of metadata-that is, a useful and usable description of what is represented by data-is one of the fundamental obstacles preventing the wider use of computational intelligence techniques in tackling the problem of digital obesity. In this paper, we propose the use of fuzzy formal concept analysis to create simple taxonomies, which can be used to structure data and a novel form of fuzzy association rule to extract simple knowledge from data organized hierarchically according to the discovered taxonomies. The association strength is monitored over time, as data sets are updated. Feasibility of the methods is shown by applying them to a large (tens of thousands of entries) database describing reported incidents of terrorism. C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.