The capacity to reach lower bounds for extraction of pollutants from wastewater by four floating aquatic macrophytes-water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), salvinia (Salvinia rotundifolia), and water primroses (Ludvigia palustris)-is investigated. It is shown that the following lower bounds can be established for wastewater purification with water hyacinth: biochemical oxygen demand (BOD), 1.3 mg/L; chemical oxygen demand (COD), 11.3 mg/L; total suspended solids (TSS), 0.5 mg/L; turbidity, 0.7 NTU; ammonia, 0.2 mg/L; and phosphorus, 1.4 mg/L. Also, the following lower bounds can be established for wastewater purification with water lettuce: BOD, 1.8 mg/L; COD, 12.5 mg/L; TSS, 0.5 mg/L; turbidity, 0.9 NTU; ammonia, 0.2 mg/L; and phosphorus, 1.6 mg/L. These lower bounds were reached in 11-to 17day experiments that were performed on diluted wastewater with reduced initial contents of the tested water quality indicators. As expected, water hyacinth exhibited the highest rates and levels of pollutant removal, thereby producing the best lower bounds of the water quality indicators. Given the initially low levels, BOD was further reduced by 86.3%, COD by 66.6%, ammonia by 97.8%, and phosphorus by 65.0% after 11 days of a batch experiment. The capacity of water plants to purify dilute wastewater streams opens new options for their application in the water treatment industry. Water Environ. Res., 79, 287 (2007).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.