The present study was based on assessments of the anti-parasitic activities of the hematophagous (blood feeding) larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae), and the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae). The metallic copper nanoparticles (Cu NPs) synthesized by polyol process from copper acetate as precursor and Tween 80 were used as both the medium and the stabilizing reagent. The efficacy of synthesized Cu NPs was tested against the larvae of blood-sucking parasites. UV-vis spectra characterization was performed, and peak was observed at 575 nm, which is the characteristic to the surface plasmon bond of Cu NPs. The strong surface plasmon absorption band observed at 575 nm may be due to the formation of non-oxidized Cu NPs. X-ray diffraction (XRD) spectral data showed concentric rings corresponding to the 26.79 (111), 34.52 (200), and 70.40 (220) reflections. XRD spectrum of the copper nanoparticles exhibited 2θ values corresponding to the copper nanocrystal. No peaks of impurities are observed in XRD data. The scanning electron micrograph (SEM) showed structures of irregular polygonal, cylindrical shape, and the size range was found to be 35-80 nm. The size of the Cu NPs was measured by atomic force microscope (AFM) in non-contact mode. For imaging by AFM, the sample was suspended in acetone and spins coated on a silicon wafer. The line profile image was drawn by the XEI software and the horizontal line at 6 μm on a 2D AFM image. Research has demonstrated that metallic nanoparticles produce toxicity in aquatic organisms that is due largely to effects of particulates as opposed to release of dissolved ions. Copper acetate solution tested against the parasite larvae exposed to varying concentrations and the larval mortality was observed for 24 h. The larval percent mortality observed in synthesized Cu NPs were 36, 49, 75, 93,100; 32, 53, 63, 73, and 100 and 36, 47, 69, 88, 100 at 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L against A. subpictus, C. quinquefasciatus and R. microplus, respectively. The larval percent mortality shown in copper acetate solution were 16, 45, 57, 66 and 100, 37, 58, 83, 87, and 100 and 41, 59, 79, 100, and 100 at 10, 20, 30, 40, and 50 mg/L against A. subpictus, C. quinquefasciatus, and R. microplus, respectively. The maximum efficacy was observed in Cu NPs and copper acetate solution against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus with LC(50) and r (2) values of 0.95 and 23.47, 1.01 and 15.24, and 1.06 and 14.14 mg/L with r (2) = 0.766; 0.957 and 0.908; 0.946; and 0.816 and 0.945, respectively. The control (distilled water) showed nil mortality in the concurrent assay. The chi-square value was significant at p ≤ 0.05 level. This is the first report on anti-parasitic activity of the synthesized Cu NPs and copper acetate solution.