In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters.Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. One important change is that RMG v3.0 is now Python 3 compatible, which supports the most up-to-date versions of cheminformatics and machine learning packages that RMG depends on. Additionally, RMG can now generate heterogeneous catalysis models, in addition to the previously available gas-and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release also includes parallelization for reaction generation and on-the-fly quantum calculations, and a new molecule isomorphism approach to improve computational performance. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.
The Reaction Mechanism Generator (RMG) database for chemical property prediction is presented. The RMG database consists of curated datasets and estimators for accurately predicting the parameters necessary for constructing a wide variety of chemical kinetic mechanisms. These datasets and estimators are mostly published and enable prediction of thermodynamics, kinetics, solvation effects, and transport properties. For thermochemistry prediction, the RMG database contains 45 libraries of thermochemical parameters with a combination of 4564 entries and a group additivity scheme with 9 types of corrections including radical, polycyclic, and surface absorption corrections with 1580 total curated groups and parameters for a graph convolutional neural network trained using transfer learning from a set of >130 000 DFT calculations to 10 000 high-quality values. Correction schemes for solvent−solute effects, important for thermochemistry in the liquid phase, are available. They include tabulated values for 195 pure solvents and 152 common solutes and a group additivity scheme for predicting the properties of arbitrary solutes. For kinetics estimation, the database contains 92 libraries of kinetic parameters containing a combined 21 000 reactions and contains rate rule schemes for 87 reaction classes trained on 8655 curated training reactions. Additional libraries and estimators are available for transport properties. All of this information is easily accessible through the graphical user interface at https://rmg.mit.edu. Bulk or on-the-fly use can be facilitated by interfacing directly with the RMG Python package which can be installed from Anaconda. The RMG database provides kineticists with easy access to estimates of the many parameters they need to model and analyze kinetic systems. This helps to speed up and facilitate kinetic analysis by enabling easy hypothesis testing on pathways, by providing parameters for model construction, and by providing checks on kinetic parameters from other sources.
In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. One important change is that RMG v3.0 is now Python 3 compatible, which supports the most up-to-date versions of cheminformatics and machine learning packages that RMG depends on. Additionally, RMG can now generate heterogeneous catalysis models, in addition to the previously available gas- and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release also includes parallelization for reaction generation and on-the-fly quantum calculations, and a new molecule isomorphism approach to improve computational performance. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.
Hot acetic acid−water mixtures can be used to purify and fractionate alkali (kraft) and organosolv lignins via the Aqueous Lignin Purification with Hot Acids (ALPHA) process. However, condensation polymerization reactions can occur in the solvated, lignin-rich liquid fraction at the elevated temperatures (e.g., 60−100 °C) of operation, significantly increasing the lignin molecular weight. Thus, conversion of ALPHA to continuous-flow operation was investigated in order to determine the effect of reduced residence times on both the above reactions and on the extraction of metals from the solvated lignin to the solvent phase. All four lignins investigated could be converted to a homogeneous lignin− water slurry at ambient temperatures, facilitating continuous operation. When a static mixer is used for the mixing and equilibration device, reducing residence times to 20−30 s, condensation polymerization reactions are essentially eliminated. For example, the molecular weight of the lignin fraction remained unchanged with continuous processing but increased from 7900 to 13200 when batch processing was used for the same ALPHA conditions. Furthermore, the 10-fold reduction in metals content (e.g., sodium content reduced from 1400 to <100 ppm) was equal to or better than that obtained by single-stage batch processing. Thus, continuous ALPHA can be used to obtain an ultrapure, metals-free lignin of well-defined and controllable molecular weight.
The open-source statistical mechanics software described here, Arkane-Automated Reaction Kinetics and Network Exploration-facilitates computations of thermodynamic properties of chemical species, high-pressure limit reaction rate coefficients, and pressure-dependent rate coefficient over multi-well molecular potential energy surfaces (PES) including the effects of collisional energy transfer on phenomenological kinetics. Arkane can use estimates to fill in information for molecules or reactions where quantum chemistry information is missing. The software solves the internal energy master equation for complex unimolecular reaction systems. Inputs to the software include converged electronic structure computations performed by the user using a variety of supported software packages (Gaussian, Molpro, Orca, TeraChem, Q-Chem, Psi4). The software outputs high-pressure limit rate coefficients and pressure-dependentThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.