Accuracy of movements requires that the central nervous system computes approximate inverse functions of the mechanical functions of limb articulations. In vertebrates, this is known to be achieved within the cerebellar pathways, and also in the cerebral cortex of primates. A cybernetic circuit achieving this computation allows accurate simulation of fast movements of the eye or forearm. It is consistent with anatomy, and with the classical view of the cerebellum as permanently supervised by the inferior olive. The inferior olive detects over-or under-shoots of movements, and the resulting climbing fiber activity corrects ongoing movements, regulates the function of cerebellar cortex and nuclei, and sets the gains of the sensorimotor reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.