The effect of cultivar and environmental variations and their interaction on anthocyanin components of strawberry were assessed for six cultivars grown in five locations from North to South of Europe in two different years. To evaluate the impact of latitude- and altitude-related factors, daily mean (Tmean), maximum (Tmax) and minimum (Tmin) temperature and global radiation accumulated for 3, 5, 10 and 15 days before fruit sampling, was analyzed. In general, fruits grown in the south were more enriched in total anthocyanin and pelargonidin-3-glucoside (pel-3-glc), the most abundant anthocyanin in strawberry. Principal component analysis (PCA) provided a separation of the growing locations within a cultivar due to latitudinal climatic differences, temporary weather changes before fruit collection and cultivation technique. PCA also depicted different patterns for anthocyanin distribution indicating a cultivar specific reaction on the environmental factors. The linear regression analysis showed that pel-3-glc was relatively less affected by these factors, while the minor anthocyanins cyanidin-3-glucoside, cyanidin-3-(6-O-malonyl)-glucoside, pelargonidin-3-rutinoside and pelargonidin-3-(6-O-malonoyl)-glucoside were sensitive to Tmax. The global radiation strongly increased cya-3-mal-glc in ‘Frida’ and pel-3-rut in ‘Frida’ and ‘Florence’. ‘Candonga’ accumulated less pel-3-glc and total anthocyanin with increased global radiation. The anthocyanin profiles of ‘Gariguette’ and ‘Clery’ were unaffected by environmental conditions.
Promoting the consumption of fruits is a key objective of nutrition policy campaigns due to their associated health benefits. Raspberries are well appreciated for their remarkable flavor and nutritional value attributable to their antioxidant properties. Consequently, one of the objectives of present-day raspberry breeding programs is to improve the fruit’s sensory and nutritive characteristics. However, developing new genotypes with enhanced quality traits is a complex task due to the intricate impacts genetic and environmental factors have on these attributes, and the difficulty to phenotype them. We used a multi-platform metabolomic approach to compare flavor- and nutritional-related metabolite profiles of four raspberry cultivars (‘Glen Ample’, ‘Schönemann’, ‘Tulameen’ and ‘Veten’) grown in different European climates. Although the cultivars appear to be better adapted to high latitudes, for their content in soluble solids and acidity, multivariate statistical analyses allowed us to underscore important genotypic differences based on the profiles of important metabolites. ‘Schönemann’ and ‘Veten’ were characterized by high levels of anthocyanins and ellagitannins, respectively, ‘Tulameen’ by its acidity, and ‘Glen Ample’ for its content of sucrose and β-ionone, two main flavor contributors. Our results confirmed the value of metabolomic-driven approaches, which may foster the development of cultivars with enhanced health properties and flavor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.