The lateral flow of gas–powder through a packed bed in a cold model is studied to understand the flow and holdup behaviour of powder in the presence of a cavity, nozzle (tuyere) protrusion, and decreasing gas condition, a system used in the ironmaking blast furnace. Experiments conducted in the current study included a two‐dimensional (2D) slot‐type packed bed. A previously published mass balance and elutriation velocity concept formed the basis for accurately quantifying the static and dynamic powder holdups. Experiments conducted under different conditions such as powder size and flux, gas flow rate, and packed particle density and size resulted in quantifying the powder holdups. The pressure drop in both horizontal and vertical directions is studied in all two‐phase flow experiments. The formation of the static holdup with time in the packed bed is studied. The reproducibility of the experiments was confirmed. The static holdup inside the packed bed at various locations along the vertical direction (i.e., height) is also quantified. The static holdup correlation developed based on experimental data resulted in a 95% confidence interval. Static powder holdup increases with a decrease in the superficial gas velocity, an increase in the size of the powder particle, and powder flux. Dynamic holdup also showed a similar trend.
This work demonstrates the study of the optimal system of solutions for shock wave propagation in a non-ideal self-gravitating gas in rotating medium with magnetic field (axial or azimuthal) for the adiabatic flow in cylindrical geometry by applying the group invariance technique. Using the group invariance technique, we have obtained the one-dimensional (1-D) optimal system of sub-algebra for the basic governing equations. The infinitesimal group optimal classes are obtained and the similarity solution in four possible cases (two cases for perfect gas and two cases for non-ideal gas) with exponential law shock path are discussed. The numerical solution by using the Runge Kutta 4th order method is obtained and the distribution of physical variables are shown via graph. The impact of the rotational parameter, non-idealness parameter, shock Cowling number, similarity exponent and gravitational parameter on the strength of the shock and flow variables are investigated. With an increase in the shock Cowling number, non-idealness and rotational parameters, the shock strength decreases, i.e., they have decaying impact on shock wave; whereas the shock strength increases with gravitational parameter and similarity exponent. Also, the strength of the shock is reduced by considering the magnetic field to be axial instead of azimuthal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.