Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).
The neurotoxicity of hard metal‐based nanoparticles (NPs) remains poorly understood. Here, we deployed the human neuroblastoma cell line SH‐SY5Y differentiated or not into dopaminergic‐ and cholinergic‐like neurons to study the impact of tungsten carbide (WC) NPs, WC NPs sintered with cobalt (Co), or Co NPs versus soluble CoCl2. Co NPs and Co salt triggered a dose‐dependent cytotoxicity with an increase in cytosolic calcium, lipid peroxidation, and depletion of glutathione (GSH). Co NPs and Co salt also suppressed glutathione peroxidase 4 (GPX4) mRNA and protein expression. Co‐exposed cells were rescued by N‐acetylcysteine (NAC), a precursor of GSH, and partially by liproxstatin‐1, an inhibitor of lipid peroxidation. Furthermore, in silico analyses predicted a significant correlation, based on similarities in gene expression profiles, between Co‐containing NPs and Parkinson's disease, and changes in the expression of selected genes were validated by RT‐PCR. Finally, experiments using primary human dopaminergic neurons demonstrated cytotoxicity and GSH depletion in response to Co NPs and CoCl2 with loss of axonal integrity. Overall, these data point to a marked neurotoxic potential of Co‐based but not WC NPs and show that neuronal cell death may occur through a ferroptosis‐like mechanism.
AHL/Fe-CNF nanocomposites were effective in increasing germination rate and plant growth as well as developing resistance towards biotic and abiotic stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.