Background: Although providing excellent outcome results, laparoscopy also induces particular pathophysiological changes in response to pneumoperitoneum. Knowledge of the pathophysiology of a CO2 pneumoperitoneum can help minimize complications while profiting from the benefits of laparoscopic surgery without concerns about its safety. Methods: A review of articles on the pathophysiological changes and complications of carbon dioxide pneumoperitoneum as well as prevention and treatment of these complications was performed using the Medline database. Results: The main pathophysiological changes during CO2 pneumoperitoneum refer to the cardiovascular system and are mainly correlated with the amount of intra-abdominal pressure in combination with the patient’s position on the operating table. These changes are well tolerated even in older and more debilitated patients, and except for a slight increase in the incidence of cardiac arrhythmias, no other significant cardiovascular complications occur. Although there are important pulmonary pathophysiological changes, hypercarbia, hypoxemia and barotraumas, they would develop rarely since effective ventilation monitoring and techniques are applied. The alteration in splanchnic perfusion is proportional with the increase in intra-abdominal pressure and duration of pneumoperitoneum. Conclusion: A moderate-to-low intra-abdominal pressure (<12 mm Hg) can help limit the extent of the pathophysiological changes since consecutive organ dysfunctions are minimal, transient and do not influence the outcome.
Robot-assisted surgery appears safe and feasible for certain standard surgical procedures. However, at its current level of development, it offers no clear, significant advantage over standard laparoscopic techniques.
Viscoelastic and aggregometric point-of-care testing was shown to be potentially useful for bedside diagnosis of sepsis. Moreover, viscoelastic and aggregometric point-of-care testing was able to determine the phase of septic coagulopathy (hypercoagulability vs. hypocoagulability) and therefore identified patients at high risk for overt disseminated intravascular coagulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.