Hepatic tissue engineering using decellularized scaffolds is a potential therapeutic alternative to conventional transplantation. However, scaffolds are usually obtained using decellularization protocols that destroy the extracellular matrix (ECM) and hamper clinical translation. We aim to develop a decellularization technique that reliably maintains hepatic microarchitecture and ECM components. Isolated rat livers were decellularized by detergent-enzymatic technique with (EDTA-DET) or without EDTA (DET). Histology, DNA quantification and proteomics confirmed decellularization with further DNA reduction with the addition of EDTA. Quantification, histology, immunostaining, and proteomics demonstrated preservation of extracellular matrix components in both scaffolds with a higher amount of collagen and glycosaminoglycans in the EDTA-DET scaffold. Scanning electron microscopy and X-ray phase contrast imaging showed microarchitecture preservation, with EDTA-DET scaffolds more tightly packed. DET scaffold seeding with a hepatocellular cell line demonstrated complete repopulation in 14 days, with cells proliferating at that time. Decellularization using DET preserves microarchitecture and extracellular matrix components whilst allowing for cell growth for up to 14 days. Addition of EDTA creates a denser, more compact matrix. Transplantation of the scaffolds and scaling up of the methodology are the next steps for successful hepatic tissue engineering.
Oesophageal tissue engineering is a therapeutic alternative when oesophageal replacement is required. Decellularised scaffolds are ideal as they are derived from tissue-specific extracellular matrix and are non-immunogenic. However, appropriate preservation may significantly affect scaffold behaviour. Here we aim to prove that an effective method for short- and long-term preservation can be applied to tissue engineered products allowing their translation to clinical application. Rabbit oesophagi were decellularised using the detergent-enzymatic treatment (DET), a combination of deionised water, sodium deoxycholate and DNase-I. Samples were stored in phosphate-buffered saline solution at 4°C (4°C) or slow cooled in medium with 10% Me2SO at -1°C/min followed by storage in liquid nitrogen (SCM). Structural and functional analyses were performed prior to and after 2 and 4 weeks and 3 and 6 months of storage under each condition. Efficient decellularisation was achieved after 2 cycles of DET as determined with histology and DNA quantification, with preservation of the ECM. Only the SCM method, commonly used for cell storage, maintained the architecture and biomechanical properties of the scaffold up to 6 months. On the contrary, 4°C method was effective for short-term storage but led to a progressive distortion and degradation of the tissue architecture at the following time points. Efficient storage allows a timely use of decellularised oesophagi, essential for clinical translation. Here we describe that slow cooling with cryoprotectant solution in liquid nitrogen vapour leads to reliable long-term storage of decellularised oesophageal scaffolds for tissue engineering purposes.
Surgical repair of large muscular defects requires the use of autologous graft transfer or prosthetic material. Naturally derived matrices are biocompatible materials obtained by tissue decellularization and are commonly used in clinical practice. Despite promising applications described in the literature, the use of acellular matrices to repair large defects has been only partially successful, highlighting the need for more efficient constructs. Scaffold recellularization by means of tissue engineering may improve not only the structure of the matrix, but also its ability to functionally interact with the host. The development of such a complex construct is challenging, due to the complexity of the native organ architecture and the difficulties in recreating the cellular niche with both proliferative and differentiating potential during growth or after damage. In this study, we tested a mouse decellularized diaphragmatic extracellular matrix (ECM) previously described by our group, for the generation of a cellular skeletal muscle construct with functional features. The decellularized matrix was stored using different conditions to mimic the off‐the‐shelf clinical need. Pediatric human muscle precursors were seeded into the decellularized scaffold, demonstrating proliferation and differentiation capability, giving rise to a functioning three‐dimensional skeletal muscle structure. Furthermore, we exposed the engineered construct to cardiotoxin injury and demonstrated its ability to activate a regenerative response in vitro promoting cell self‐renewal and a positive ECM remodeling. Functional reconstruction of an engineered skeletal muscle with maintenance of a stem cell pool makes this a promising tool toward future clinical applications in diaphragmatic regeneration. Stem Cells Translational Medicine 2019;8:858&869
We conclude that administering L: -citrulline proved effective in improving alveolar and vascular growth in a model of oxygen-induced pulmonary damage, suggesting better lung growth and matrix regulation than in untreated groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.