Similarities in the chemical composition of two of the closest Milky Way satellites, namely, the Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf galaxy, have been proposed in the literature, suggesting similar chemical enrichment histories between the two galaxies. This proposition, however, rests on different abundance analyses, which likely introduce various systematics that hamper a fair comparison among the different data sets. In order to bypass this issue (and highlight real similarities and differences between their abundance patterns), we present a homogeneous chemical analysis of 30 giant stars in the LMC, 14 giant stars in Sgr, and 14 giants in the Milky Way, based on high-resolution spectra taken with the spectrograph UVES-FLAMES. The LMC and Sgr stars, in the considered metallicity range ([Fe/H] > −1.1 dex), show very similar abundance ratios for almost all the elements, with differences only in the heavy s-process elements Ba, La, and Nd, suggesting a different contribution by asymptotic giant branch stars. On the other hand, the two galaxies have chemical patterns clearly different from those measured in the Galactic stars, especially for the elements produced by massive stars. This finding suggests that the massive stars contributed less to the chemical enrichment of these galaxies with respect to the Milky Way. The derived abundances support similar chemical enrichment histories for the LMC and Sgr.
Chemical tagging is a powerful tool to reveal the origin of stars and globular clusters (GCs), especially when dynamics alone cannot provide robust answers. So far, mostly α-elements and neutron capture elements have been used to distinguish stars born in the Milky Way (MW) from those born in external environments such as that of dwarf galaxies. Here, instead, we use iron-peak element abundances to investigate the origin of a sample of metalrich GCs. By homogeneously analyzing high-resolution UVES spectra of giant stars belonging to four metal-rich GCs (namely NGC 5927, NGC 6388, NGC 6441, and NGC 6496), we find that while the α-elements Si and Ca have similar abundance ratios for all four GCs, and Ti and neutron capture elements (La, Ba, and Eu) only show a marginal discrepancy, a stark difference is found when considering the abundances of some iron-peak elements (Sc, V, and Zn). In particular, NGC 6388 and NGC 6441 have abundance ratios for these iron-peak elements significantly lower (by ∼0.5 dex) than those measured in NGC 5927 and NGC 6496, which are clearly identified as born in situ MW clusters through an analysis of their orbital properties. These measurements indicate that the environment in which these clusters formed is different, and they provide robust evidence supporting an accreted origin from the same progenitor for NGC 6388 and NGC 6441.
We present the chemical composition of 206 red giant branch stars that are members of the Small Magellanic Cloud (SMC) using optical high-resolution spectra collected with the multi-object spectrograph FLAMES-GIRAFFE at the ESO Very Large Telescope. This sample includes stars in three fields that are located in different positions within the parent galaxy. We analysed the main groups of elements, namely light- (Na), α- (O, Mg, Si, Ca, and Ti), iron-peak (Sc, V, Fe, Ni, and Cu), and s-process elements (Zr, Ba, and La). The metallicity distribution of the sample displays a main peak around [Fe/H]∼–1 dex and a weak metal-poor tail. However, the three fields display different [Fe/H] distributions. In particular, a difference of 0.2 dex is found between the mean metallicities of the two innermost fields. The fraction of metal-poor stars increases significantly (from ∼1 to ∼20%) from the innermost fields to the outermost field, likely reflecting an age gradient in the SMC. We also found an indication of possible chemically and kinematic distinct substructures. The ratios of the SMC stars are clearly distinct from those of Milky Way stars, in particular, for the elements produced by massive stars (e.g. Na, α, and most iron-peak elements), whose abundance ratios are systematically lower than those measured in our Galaxy. This shows that massive stars contributed less to the chemical enrichment of the SMC than the Milky Way, according to the low star formation rate expected for this galaxy. Finally, we identified small systematic differences in the abundances of some elements (Na, Ti, V, and Zr) in the two innermost fields, suggesting that the chemical enrichment history in the SMC has not been uniform.
We present metallicity and radial velocity for 450 bona-fide members of the Sagittarius dwarf spheroidal (Sgr dSph) galaxy, measured from high resolution (R 18000) FLAMES@VLT spectra. The targets were carefully selected (a) to sample the core of the main body of Sgr dSph while avoiding contamination from the central stellar nucleus, and (b) to prevent any bias on the metallicity distribution, by selecting targets based on their Gaia parallax and proper motions. All the targets selected in this way were confirmed as radial velocity members. We used this sample to derive the first metallicity distribution of the core of the Sgr dSph virtually unaffected by metallicity biases. The observed distribution ranges from [Fe/H] −2.3 to [Fe/H] 0.0, with a strong, symmetric and relatively narrow peak around [Fe/H] −0.5 and a weak, extended metal-poor tail, with only 13.8 ± 1.9% of the stars having [Fe/H]< −1.0. We confirm previous evidence of correlations between chemical and kinematical properties of stars in the core of Sgr. In our sample stars with [Fe/H]≥ −0.6 display a lower velocity dispersion and a higher rotation amplitude than those with [Fe/H]< −0.6, confirming previous suggestions of a disk/halo structure for the progenitor of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.