In this paper we adopt a chemical evolution model, which is an improved version of the Chiappini, Matteucci, & Gratton model, assuming two main accretion episodes for the formation of the Galaxy, the Ðrst forming the halo and bulge in a short timescale and the second one forming the thin disk, with a timescale that is an increasing function of the Galactocentric distance (being of the order of 7 Gyrs at the solar neighborhood). The present model takes into account in more detail than previously the halo density distribution and explores the e †ects of a threshold density in the star formation process during both the halo and disk phases. The model also includes the most recent nucleosynthesis prescriptions concerning supernovae of all types, novae, and single stars dying as white dwarfs. In the comparison between model predictions and available data, we have focused our attention on abundance gradients as well as gas, stellar, and star formation rate distributions along the disk, since this kind of model has already proven to be quite successful in reproducing the solar neighborhood characteristics. We suggest that the mechanism for the formation of the halo leaves detectable imprints on the chemical properties of the outer regions of the disk, whereas the evolution of the halo and the inner disk are almost completely disentangled. This is due to the fact that the halo and disk densities are comparable at large Galactocentric distances and therefore the gas lost from the halo can substantially contribute to building up the outer disk. We also show that the existence of a threshold density for the star formation rate, both in the halo and disk phase, is necessary to reproduce the majority of observational data in the solar vicinity and in the whole disk. In particular, a threshold in the star formation implies the occurrence of a gap in the star formation at the halo-disk transition phase, in agreement with recent data. We conclude that a relatively short halo formation timescale (^0.8 Gyr), in agreement with recent estimates for the age di †erences among Galactic globular clusters, coupled with an "" inside-out ÏÏ formation of the Galactic disk, where the innermost regions are assumed to have formed much faster than the outermost ones, represents, at the moment, the most likely explanation for the formation of the Milky Way. This scenario allows us to predict abundance gradients and other radial properties of the Galactic disk in very good agreement with observations. Moreover, as a consequence of the adopted "" inside-out ÏÏ scenario for the disk, we predict that the abundance gradients along the Galactic disk must have increased with time and that the average S[a/Fe]T ratios in stars (halo plus disk) slightly decrease going from 4 to 10 kpcs from the Galactic center. We also show that the same ratios increase substantially toward the outermost disk regions and the expected scatter in the stellar ages decreases, because the outermost regions are dominated by halo stars. More observations at large Galact...
Context. Galactic chemical evolution models are useful tools for interpreting the large body of high-quality observational data on the chemical composition of stars and gas in galaxies that have become available in recent years. Aims. This is the second paper of a series that aims at quantifying the uncertainties in chemical evolution model predictions related to the underlying model assumptions. Specifically, it deals with the uncertainties due to the choice of the stellar yields. Methods. We adopted a widely used model for the chemical evolution of the Galaxy to test the effects of changing the stellar nucleosynthesis prescriptions on the predicted evolution of several chemical species. Up-to-date results from stellar evolutionary models were carefully taken into account. Results. We find that, except for a handful of elements whose nucleosynthesis in stars is well understood by now, large uncertainties still affect model predictions. This is especially true for the majority of the iron-peak elements, but also for much more abundant species such as carbon and nitrogen. The main causes of the mismatch we find among the outputs of different models assuming different stellar yields and among model predictions and observations are (i) the adopted location of the mass cut in models of type II supernova explosions; (ii) the adopted strength and extent of hot bottom burning in models of asymptotic giant branch stars; (iii) the neglection of the effects of rotation on the chemical composition of the stellar surfaces; (iv) the adopted rates of mass loss and of (v) nuclear reactions; and (vi) the different treatments of convection. Conclusions. Our results suggest that it is mandatory to include processes such as hot bottom burning in intermediate-mass stars and rotation in stars of all masses in accurate studies of stellar evolution and nucleosynthesis. In spite of their importance, both these processes still have to be better understood and characterized. As for massive stars, presupernova models computed with mass loss and rotation are available in the literature, but they still wait for a self-consistent coupling with the results of explosive nucleosynthesis computations.
We discuss the evolution of oxygen, carbon and nitrogen in galaxies of different morphological type by adopting detailed chemical evolution models with different star formation histories (continuous star formation or starbursts). In all the models detailed nucleosynthesis prescriptions from supernovae of all types and low-and intermediate-mass stars are taken into account. We start by computing chemical evolution models for the Milky Way with different stellar nucleosynthesis prescriptions. Then, a comparison between model results and 'key' observational constraints allows us to choose the best set of stellar yields. Once the best set of yields is identified for the Milky Way, we apply the same nucleosynthesis prescriptions to other spirals (in particular M101) and dwarf irregular galaxies. We compare our model predictions with the [C,N,O/Fe] versus [Fe/H], log(C/O) versus 12 + log(O/H), log(N/O) versus 12+ log(O/H) and [C/O] versus [Fe/H] relations observed in the solar vicinity and draw the following conclusions. (i) There is no need to invoke strong stellar winds in massive stars in order to explain the evolution of the C/O ratio, as often claimed in the literature. (ii) The predicted [O/Fe] ratio as a function of metallicity is in very good agreement with the most recent data available for the solar vicinity, especially for halo stars. This fact again suggests that the oxygen stellar yields in massive stars computed by either Woosley & Weaver or Thielemann, Nomoto & Hashimoto without taking into account mass loss, reproduce the observations well. (iii) We predict that the gap observed in the [Fe/O] versus [O/H] at [O/H]∼ −0.3 dex should be observed also in C/O versus O/H. The existence of such a gap is predicted by our model for the Milky Way and is caused by a halt in the star formation between the end of the thick disc and the beginning of the thin disc phase. Such a halt is produced by the adopted threshold gas density for the star formation rate. (iv) This threshold is also responsible for the prediction of a very slow chemical enrichment between the time of formation of the solar system (4.5 Gyr ago) and the present time, in agreement with new abundance measurements. (v) The chemical evolution models for dwarf irregulars and spirals, adopting the same nucleosynthesis prescriptions of the best model for the solar neighbourhood, well reproduce the available constraints for these objects. (vi) By taking into account the results obtained for all the studied galaxies (Milky Way, M101, dwarf galaxies and DLAs) we conclude that there is no need for claiming a strong primary component of N produced in massive stars (M > 10 M ). (vii) Moreover, there is a strong indication that C and N are mainly produced in low-and intermediate-mass stars, at variance with recent suggestions that most of the C should come from massive stars. In particular, intermediate-mass stars with masses between 4 and 8 M contribute mostly to N (both primary and secondary) whereas those with masses between 1 and 3 M contribute mostly to C. A...
We have explored the Eu production in the Milky Way by means of a very detailed chemical evolution model. In particular, we have assumed that Eu is formed in merging neutron star (or neutron star black hole) binaries as well as in type II supernovae. We have tested the effects of several important parameters influencing the production of Eu during the merging of two neutron stars, such as: i) the time scale of coalescence, ii) the Eu yields and iii) the range of initial masses for the progenitors of the neutron stars. The yields of Eu from type II supernovae are very uncertain, more than those from coalescing neutron stars, so we have explored several possibilities. We have compared our model results with the observed rate of coalescence of neutron stars, the solar Eu abundance, the [Eu/Fe] versus [Fe/H] relation in the solar vicinity and the [Eu/H] gradient along the Galactic disc. Our main results can be summarized as follows: i) neutron star mergers can be entirely responsible for the production of Eu in the Galaxy if the coalescence time scale is no longer than 1 Myr for the bulk of binary systems, the Eu yield is around 3 × 10 −7 M ⊙ , and the mass range of progenitors of neutron stars is 9-50 M ⊙ ; ii) both type II supernovae and merging neutron stars can produce the right amount of Eu if the neutron star mergers produce 2 × 10 −7 M ⊙ per system and type II supernovae, with progenitors in the range 20-50 M ⊙ , produce yields of Eu of the order of 10 −8 -10 −9 M ⊙ ; iii) either models with only neutron stars producing Eu or mixed ones can reproduce the observed Eu abundance gradient along the Galactic disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.