Annual Review of Astronomy and Astrophysics, 47, pp. 371-425 (2009)International audienc
Context. Galactic chemical evolution models are useful tools for interpreting the large body of high-quality observational data on the chemical composition of stars and gas in galaxies that have become available in recent years. Aims. This is the second paper of a series that aims at quantifying the uncertainties in chemical evolution model predictions related to the underlying model assumptions. Specifically, it deals with the uncertainties due to the choice of the stellar yields. Methods. We adopted a widely used model for the chemical evolution of the Galaxy to test the effects of changing the stellar nucleosynthesis prescriptions on the predicted evolution of several chemical species. Up-to-date results from stellar evolutionary models were carefully taken into account. Results. We find that, except for a handful of elements whose nucleosynthesis in stars is well understood by now, large uncertainties still affect model predictions. This is especially true for the majority of the iron-peak elements, but also for much more abundant species such as carbon and nitrogen. The main causes of the mismatch we find among the outputs of different models assuming different stellar yields and among model predictions and observations are (i) the adopted location of the mass cut in models of type II supernova explosions; (ii) the adopted strength and extent of hot bottom burning in models of asymptotic giant branch stars; (iii) the neglection of the effects of rotation on the chemical composition of the stellar surfaces; (iv) the adopted rates of mass loss and of (v) nuclear reactions; and (vi) the different treatments of convection. Conclusions. Our results suggest that it is mandatory to include processes such as hot bottom burning in intermediate-mass stars and rotation in stars of all masses in accurate studies of stellar evolution and nucleosynthesis. In spite of their importance, both these processes still have to be better understood and characterized. As for massive stars, presupernova models computed with mass loss and rotation are available in the literature, but they still wait for a self-consistent coupling with the results of explosive nucleosynthesis computations.
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628The 1 is consistent with a power-law distribution of slopes~-2 and a truncation of a few times 10 5 M . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (10 4 M ) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.Astrophysical Journal, 841:131 (26pp), 2017 June 1 https:
The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope, aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ∼kpc-size clustered structures. Five-band imaging, from the near-ultraviolet to the I-band, with the Wide Field Camera 3, plus parallel optical imaging with the Advanced Camera for Surveys, is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the Wide Field Camera 3 are: F275W(λ2,704Å), F336W(λ3,355Å), F438W(λ4,325Å), F555W(λ5,308Å), and F814W(λ8,024Å); the parallel observations with the Advanced Camera for Surveys use the filters: F435W(λ4,328Å), F606W(λ5,921Å), and F814W(λ8,057Å). The multi-band images are yielding accurate recent ( 50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation * Einstein Fellow within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial science results. Because LEGUS will provide a reference survey and a foundation for future observations with JWST and with ALMA, a large number of data products are planned for delivery to the community.
We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color magnitude diagrams (CMDs) extend ∼3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC 419 where the Padova isochrones provided the best fit. Using Dartmouth isochrones we derive ages of 7.5±0.5 Gyr (Lindsay 1), 6.5±0.5 Gyr (Kron 3), 6±0.5 Gyr (NGC 339), 6±0.5 Gyr (NGC 416), and 6.5 ± 0.5 Gyr (Lindsay 38). The CMD of NGC 419 shows several main-sequence turn-offs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC 419. We confirm that the SMC contains several intermediate-age populous star clusters with ages unlike those of the Large Magellanic Cloud (LMC) and the Milky Way (MW). Interestingly, our intermediateage star clusters have a metallicity spread of ∼0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally concentrated blue straggler star candidates in NGC 416, while for the other clusters these are not present. Using the red clump magnitudes, we find that the closest cluster, NGC 419 (∼50 kpc), and the farthest cluster, Lindsay 38 (∼67 kpc), have a relative distance of ∼17 kpc, which confirms the large depth of the SMC. The three oldest SMC clusters (NGC 121, Lindsay 1, Kron 3) lie in the north-western part of the SMC, while the youngest (NGC 419) is located near the SMC main body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.