We present an advanced technique for the design and optimization of GaAs/ AlGaAs quantum cascade laser structures. It is based on the implementation of the simulated annealing algorithm with the purpose of determining a set of design parameters that satisfy predefined conditions, leading to an enhancement of the device output characteristics. Two important design aspects have been addressed: improved thermal behavior, achieved by the use of higher conduction band offset materials, and a more efficient extraction mechanism, realized via a ladder of three lower laser states, with subsequent pairs separated by the optical phonon energy. A detailed analysis of performance of the obtained structures is carried out within a full self-consistent rate equations model of the carrier dynamics. The latter uses wave functions calculated by the transfer matrix method, and evaluates all relevant carrier-phonon and carrier-carrier scattering rates from each quantized state to all others within the same and neighboring periods of the cascade. These values are then used to form a set of rate equations for the carrier density in each state, enabling further calculation of the current density and gain as a function of the applied field and temperature. This paper addresses the application of the described procedure to the design of ϳ 9 m GaAs-based mid-infrared quantum cascade lasers and presents the output characteristics of some of the designed optimized structures.
We describe the application of our computational model, developed for finding the optical gain in a mid-infrared quantum cascade laser subjected to a strong magnetic field, to two distinct λ ∼ 9 µm GaAs-based structures. The additional carrier confinement induced by the field alters the transition rates for the optical-and acoustic-phonon scattering processes from the upper laser level, thus affecting the laser output properties, in particular the optical gain. Within this model, the gain is found by solving the system of rate equations, from which the carrier densities in each level are calculated. Numerical results are presented for magnetic fields between 10 and 60 T, and the band nonparabolicity is taken into account.
We report on a detailed experimental and theoretical analysis of the role of injector doping density on both the threshold current density (Jth) and the saturation current density (Jsat), determining the dynamic range of the quantum cascade lasers. The experimental results were obtained from two growth series of λ≈9μm GaAs∕Al0.45Ga0.55As quantum-cascade lasers based on single and double phonon resonance depopulation mechanisms. We derive a quasilinear dependence of Jth on the injector doping density of both designs for doping range as wide as (4–10)×1011cm−2. Despite threshold current increase the faster rise of saturation current with doping results in an enhanced dynamic range for injector doping up to ∼8×1011cm−2. For higher doping levels, Jsat itself saturates. Furthermore, our investigations yield that single phonon resonance devices exhibit clear current saturation simultaneously with a decrease of the optical power, whereas two phonon resonance devices show only power saturation, which we attribute to increased leakage currents. These deteriorate the laser performance of the latter design at higher operational temperatures.
Article:Harrison, P., Indjin, D., Jovanovic, V.D. et al. (7 more Harrison, P. and Indjin, D. and Jovanovic, V.D. and Mircetic, A. and Ikonic, Z. and Kelsall, R.W. and McTavish, J. and Savic, I. and Vukmirovic, N. and Milanovic, V. (2005) The philosophy behind this work has been to build a predictive 'bottom up' physical model of quantum cascade lasers (QCLs) for use as a design tool, to interpret experimental results and hence improve understanding of the physical processes occurring inside working devices and as a simulator for developing new material systems. The standard model uses the envelope function and effective mass approximations to solve two complete periods of the QCL under an applied bias. Other models, such as k.p and empirical pseudopotential, have been employed in p-type systems where the more complex band structure requires it. The resulting wave functions are then used to evaluate all relevant carrier-phonon, carrier-carrier and alloy scattering rates from each quantised state to all others within the same and the neighbouring period. This information is then used to construct a rate equation for the equilibrium carrier density in each subband and this set of coupled rate equations are solved self-consistently to obtain the carrier density in each eigenstate. The latter is a fundamental description of the device and can be used to calculate the current density and gain as a function of the applied bias and temperature, which in turn yields the threshold current and expected temperature dependence of the device characteristics. A recent extension which includes a further iteration of an energy balance equation also yields the average electron (or hole) temperature over the subbands. This paper will review the method and describe its application to mid-infrared and terahertz, GaAs, GaN, SiGe cascade laser designs. Repository paper
An experimental and theoretical comparative analysis of the output characteristics of λ ≈ 9m GaAs/Al0.45Ga0.55As quantum cascade lasers based on single and double phonon resonance depopulation mechanisms were presented. The layer structures were grown with solid source molecular beam epitaxy and consist of 48 or 36 active stages embedded in a symmetrical plasmon enhanced waveguide. From the wafers, ridge waveguide lasers were fabricated by optical lithography and dry etching. The theoretical model is based on a fully non-equilibrium Schrödinger- Poisson self-consistent analysis of the coupled scattering rate and single-temperature energy balance equations, taking all relevant electron-LO phonon, electron-electron and electron-ionised impurity scattering processes into account. Single phonon resonance devices exhibit clear current saturation, simultaneously with a decrease of the optical power. In the moderate doping regime, a quasi-linear dependence of both the threshold and saturation current densities on injector doping, were measured, in a very good agreement with theoretical predictions. Double phonon resonance lasers exhibit ‘saturation’ mechanism evident from their decrease in optical power, but without pronounced current saturation. Previously reported saturation of the ‘maximal’ current under higher injector doping in single phonon resonance lasers, is also observed in the double phonon resonance structure for injector sheet doping above 8x1011cm-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.