We present results from the semi-analytic model of galaxy formation sag applied on the MultiDark simulation MDPL2. sag features an updated supernova (SN) feedback scheme and a robust modelling of the environmental effects on satellite galaxies. This incorporates a gradual starvation of the hot gas halo driven by the action of ram pressure stripping (RPS), that can affect the cold gas disc, and tidal stripping (TS), which can act on all baryonic components. Galaxy orbits of orphan satellites are integrated providing adequate positions and velocities for the estimation of RPS and TS. The star formation history and stellar mass assembly of galaxies are sensitive to the redshift dependence implemented in the SN feedback model. We discuss a variant of our model that allows to reconcile the predicted star formation rate density at z 3 with the observed one, at the expense of an excess in the faint end of the stellar mass function at z = 2. The fractions of passive galaxies as a function of stellar mass, halo mass and the halo-centric distances are consistent with observational measurements. The model also reproduces the evolution of the main sequence of star forming central and satellite galaxies. The similarity between them is a result of the gradual starvation of the hot gas halo suffered by satellites, in which RPS plays a dominant role. RPS of the cold gas does not affect the fraction of quenched satellites but it contributes to reach the right atomic hydrogen gas content for more massive satellites (M 10 10 M ).
We carried out targeted ALMA observations of 129 fields in the COSMOS region at 1.25 mm, detecting 152 galaxies at S/N≥5 with an average continuum RMS of 150 µJy. These fields represent a S/N-limited sample of AzTEC / ASTE sources with 1.1 mm S/N≥4 over an area of 0.72 square degrees. Given ALMA's fine resolution and the exceptional spectroscopic and multiwavelength photometric data available in COSMOS, this survey allows us unprecedented power in identifying submillimeter galaxy counterparts and determining their redshifts through spectroscopic or photometric means. In addition to 30 sources with prior spectroscopic redshifts, we identified redshifts for 113 galaxies through photometric methods and an additional nine sources with lower limits, which allowed a statistically robust determination of the redshift distribution. We have resolved 33 AzTEC sources into multi-component systems and our redshifts suggest that nine are likely to be physically associated. Our overall redshift distribution peaks at z ∼2.0 with a high-redshift tail skewing the median redshift toz=2.48±0.05. We find that brighter millimeter sources are preferentially found at higher redshifts. Our faintest sources, with S 1.25mm <1.25 mJy, have a median redshift ofz=2.18±0.09, while the brightest sources, S 1.25mm >1.8 mJy, have a median redshift ofz=3.08±0.17. After accounting for spectral energy distribution shape and selection effects, these results are consistent with several previous submillimeter galaxy surveys, and moreover, support the conclusion that the submillimeter galaxy redshift distribution is sensitive to survey depth.
We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [α/Fe] abundance ratios and stellar mass in elliptical galaxies. We implement a new galaxy-wide stellar initial mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in the semi-analytic model SAG and evaluate its impact on the chemical evolution of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [α/Fe]-stellar mass relation. Massive galaxies reach higher [α/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as low as 5 M ⊙ and 2, respectively. A mild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass, older galaxies (with formation redshifts 2) are formed in shorter time-scales ( 2 Gyr), thus achieving larger [α/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [α/Fe]-galaxy mass relation, but is responsible for the big dispersion of [α/Fe] abundance ratios at fixed stellar mass. We further test the hyphothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.
Context. Dusty star-forming galaxies are among the most prodigious systems at high redshift (z > 1), characterized by high starformation rates and huge dust reservoirs. The bright end of this population has been well characterized in recent years, but considerable uncertainties remain for fainter dusty star-forming galaxies, which are responsible for the bulk of star formation at high redshift and thus play a key role in galaxy growth and evolution. Aims. In this first paper of our series, we describe our methods for finding high redshift faint dusty galaxies using millimeter observations with ALMA. Methods. We obtained ALMA 1.1 mm mosaic images for three strong-lensing galaxy clusters from the Frontier Fields Survey, which constitute some of the best studied gravitational lenses to date. The ≈2 × 2 mosaics overlap with the deep HST WFC3/IR footprints and encompass the high magnification regions of each cluster for maximum intrinsic source sensitivity. The combination of extremely high ALMA sensitivity and the magnification power of these clusters allows us to systematically probe the sub-mJy population of dusty star-forming galaxies over a large surveyed area. Results. We present a description of the reduction and analysis of the ALMA continuum observations for the galaxy clusters Abell 2744 (z = 0.308), MACS J0416.1-2403 (z = 0.396) and MACS J1149.5+2223 (z = 0.543), for which we reach observed rms sensitivities of 55, 59 and 71 µJy beam −1 respectively. We detect 12 dusty star-forming galaxies at S /N ≥ 5.0 across the three clusters, all of them presenting coincidence with near-infrared detected counterparts in the HST images. None of the sources fall close to the lensing caustics, thus they are not strongly lensed. The observed 1.1 mm flux densities for the total sample of galaxies range from 0.41 to 2.82 mJy, with observed effective radii spanning 0. 05 to 0. 37 ± 0. 21. The lensing-corrected sizes of the detected sources appear to be in the same range as those measured in brighter samples, albeit with possibly larger dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.