We developed high quality 2-inch GaAs/Ge/Si (100) epitaxial substrates, which may be used instead of GaAs monolithic substrates for fabrication of solar cells, photodetectors, LEDs, lasers, etc. A 200–300 nm Ge buffer layer was grown on Si substrates using the HW-CVD technique at 300°C, a tantalum strip heated to 1400°C was used as the “hotwire”. The MOCVD method was used to grow a 1 μ GaAs layer on a Ge buffer. The TDD in the GaAs layers did not exceed (1–2)∙105 cm-2 and the surface RMS roughness value was under 1 nm.
Heteroepitaxial GaN and GaAs films were grown by both conventional two-step MOCVD and the new “capillary epitaxy” technique on (001) and (111) fianite (YSZ) substrates. The capillary epitaxy technique was investigated for the example of GaAs films growth on a YSZ substrate. This technique allows both the reduction of the minimum thickness and the improvement of the quality of III-V films. PL spectra of undoped GaN films on YSZ were studied.
Subrmicron heteroepitaxial GaAs and GaN films were grown by both conventional MOCVD and «capillary epitaxy» technique on (001) and (111) fianit (YSZ)substrates. A preliminary annealing of the substrates under vakuum was made in order to stabilize the surface by removing of some amount of oxygen. Conditions of single crystalline growth of GaAs submicron films (50–500nm) have been determined. The films had mirror-like surface morphology and high structural perfection. The distribution of Zr, O, Y across the film-substrate interface was sharp and doping impurities contents were uniform over the film. PL spectra of undoped GaN films on YSZ were studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.