Ultrananocrystalline diamond (UNCD) films with up to 0.2% total nitrogen content were synthesized by a microwave plasma-enhanced chemical-vapor-deposition method using a CH4(1%)/Ar gas mixture and 1%–20% nitrogen gas added. The electrical conductivity of the nitrogen-doped UNCD films increases by five orders of magnitude (up to 143 Ω−1 cm−1) with increasing nitrogen content. Conductivity and Hall measurements made as a function of film temperature down to 4.2 K indicate that these films have the highest n-type conductivity and carrier concentration demonstrated for phase-pure diamond thin films. Grain-boundary conduction is proposed to explain the remarkable transport properties of these films.
Models of ion dynamics in radio-frequency (rf) biased, high-density plasma sheaths are needed to predict ion bombardment energies in plasma simulations. To test these models, we have measured ion energy distributions (IEDs) in pure CF4 discharges at 1.33 Pa (10 mTorr) in a high-density, inductively coupled plasma reactor, using a mass spectrometer equipped with an ion energy analyzer. IEDs of CF3+, CF2+, CF+, and F+ ions were measured as a function of bias frequency, bias amplitude, and inductive source power. Simultaneous measurements by a capacitive probe and a Faraday cup provide enough information to determine the input parameters of sheath models and allow direct comparison of calculated and measured IEDs. A rigorous and comprehensive test of one numerical sheath model was performed. The model, which includes a complete treatment of time-dependent ion dynamics in the sheath, was found to predict the behavior of measured IEDs to good accuracy over the entire range of bias frequency, including complicated effects that are observed when the ion transit time is comparable to the rf bias period.
In contrast to conventional methods of diamond chemical vapour deposition (CVD), nanocrystalline diamond CVD takes place with only a small fraction of feed gas hydrogen. Minimal amounts of , believed critical in hydrogen-rich CVD, are expected to be produced in hydrogen-deficient systems and alternative mechanisms for diamond growth must be considered. The carbon dimer, , is believed to be an important species in these growth environments. We have experimentally determined the density of gas phase in and microwave plasmas used to deposit nanocrystalline diamond. The density is monitored using high-sensitivity absorption spectroscopy of the (0, 0) band as chamber pressure, microwave power, substrate temperature and feed gas mixtures are varied for these two chemical systems. The absolute density of is most sensitive to the total chamber pressure and fraction of carbon in all molecular species in the feed gas in discharges and to the total chamber pressure and substrate temperature in plasmas. We discuss possible production channels in both chemical systems. The efficiency of production from fullerene precursors is over an order of magnitude greater than that from hydrocarbon precursors.
We report the systematic comparison of the optical emission intensity of the d 3 → a 3 (0, 0) vibrational band of the C 2 Swan system with the absolute C 2 concentration in Ar/H 2 /CH 4 and Ar/H 2 /C 60 microwave plasmas used in the deposition of nanocrystalline diamond. The absolute C 2 concentration is obtained using white-light absorption spectroscopy. Emission intensity correlates linearly with C 2 density for variations of several plasma parameters and across two decades of species concentration. Although optical emission intensity generally is not an accurate quantitative diagnostic for gas phase species concentrations, these results confirm the reliability of the (0,0) Swan band for relative determination of C 2 density with high sensitivity under conditions used for hydrogen-deficient plasma-enhanced chemical vapour deposition of diamond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.