We suggest an explanation of a sharp increase in the abundance of cosmogenic radiocarbon found in tree rings dated AD 775. The increase could originate from high-energy irradiation of the atmosphere by a galactic gamma-ray burst. We argue that, unlike a cosmic ray event, a gamma-ray burst does not necessarily result in a substantial increase in long-lived 10 Be atmospheric production. At the same time, the 36 Cl nuclide would be generated in the amounts detectable in the corresponding ice core samples from Greenland and Antarctica. These peculiar features allow experimental discrimination of nuclide effects caused by gamma-ray bursts and by powerful proton events.
Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.