The recently discovered DNA polymerase iota differs greatly from the numerous eukaryotic and prokaryotic DNA polymerases known previously in its ability to catalyze error-prone DNA synthesis. Using homogeneous preparations of the enzyme, it was shown previously that DNA polymerase iota incorporated preferentially dGMP opposite the thymidine of the template in the growing DNA chain. To elucidate the role of this enzyme in the mammals, its activity was assayed in crude cell extracts of different mouse organs. It is shown that the extracts of the brain and testis cells exhibit the highest activity of DNA polymerase iota, which is not in agreement with the results of other authors. The data suggest that the tissue specific expression of DNA polymerase iota is regulated to a significant degree at the posttranscriptional and posttranslational levels.
Recent studies performed with crude extracts of mouse tissues showed that the activity of DNA-polymerase iota (Pol iota) can be detected only in brain and testis extracts. To assess whether the activity of Pol iota is associated with animal behavior, we determined Pol iota activity in brain extracts of mice of two lines sharply differing in aggressiveness (RSB and RLB). We found that Pol iota activity in the mice with aggressive behavior was three times higher than in the less aggressive mice. The possible relationship between the activity of Pol iota and animal behavior is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.