Aptamers are short single-stranded oligonucleotides that are capable of binding various molecules with high affinity and specificity. When the technology of aptamer selection was developed almost a quarter of a century ago, a suggestion was immediately put forward that it might be a revolutionary start into solving many problems associated with diagnostics and the therapy of diseases. However, multiple attempts to use aptamers in practice, although sometimes successful, have been generally much less efficient than had been expected initially. This review is mostly devoted not to the successful use of aptamers but to the problems impeding the widespread application of aptamers in diagnostics and therapy, as well as to approaches that could considerably expand the range of aptamer application.
DNA polymerase iota (Pol iota) of mammals is a member of the Y family of DNA polymerases. Among many other genome caretakers, these enzymes are responsible for maintaining genome stability. The members of the Y-family DNA polymerases take part in translesion DNA synthesis, bypassing some DNA lesions, and are characterized by low fidelity of DNA synthesis. A unique ability of Pol iota to predominantly incorporate G opposite T allowed us to identify the product of this enzyme among those synthesized by other DNA polymerases. This product can be called a "false note" of Pol iota. We measured the enzyme activity of Pol iota in crude extracts of cells from different organs of five inbred strains of mice (N3H/Sn, 101/H, C57BL/6, BALB/c, 129/J) that differed in a number of parameters. The "false note" of Pol iota was clearly sounding only in the extracts of testis and brain cells from four analyzed strains: N3H/Sn, 101/H, C57BL/6, BALB/c. In mice of 129/J strain that had a nonsense mutation in the second exon of the pol iota gene, the Pol iota activity was reliably detectable only in the extracts of brain. The data show that the active enzyme can be formed in some cell types even if they carry a nonsense mutation in the pol iota gene. This supports tissue-specific regulation of pol iota gene expression through alternative splicing. A semiquantitative determination of pol iota activity in mice strains different in their radiosensitivity suggests a reciprocal correlation between the enzyme activity of pol iota in testis and the resistance of mice to radiation.
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.
The recently discovered DNA polymerase iota differs greatly from the numerous eukaryotic and prokaryotic DNA polymerases known previously in its ability to catalyze error-prone DNA synthesis. Using homogeneous preparations of the enzyme, it was shown previously that DNA polymerase iota incorporated preferentially dGMP opposite the thymidine of the template in the growing DNA chain. To elucidate the role of this enzyme in the mammals, its activity was assayed in crude cell extracts of different mouse organs. It is shown that the extracts of the brain and testis cells exhibit the highest activity of DNA polymerase iota, which is not in agreement with the results of other authors. The data suggest that the tissue specific expression of DNA polymerase iota is regulated to a significant degree at the posttranscriptional and posttranslational levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.