The aim of this study was to examine whether extreme endurance stress of trained athletes can influence lipid peroxidation and muscle enzymes. A randomized and placebo-controlled study was carried out on 24 trained long-distance runners who were substituted with alpha-tocopherol (400 I.U. d-1) and ascorbic acid (200 mg d-1) during 4.5 weeks prior to a marathon race. The serum concentrations of retinol, ascorbic acid, beta-carotene, alpha-tocopherol, malondialdehyde (TBARS) and uric acid as well as glutathione peroxidase (GSH Px) and catalase were measured 4.5 weeks before (A), immediately before (B), immediately after (C) and 24 h after (D) the course. After competition (C) TBARS serum concentrations of the athletes (n = 22) decreased in both groups (P < 0.0001). The ascorbic acid serum concentration increased significantly in the supplemented group from (A) to (B) (P < 0.01), from (B) to (C) (P < 0.001) and in the placebo group a significant increase from (B) to (C) (P < 0.01) was observed. The alpha-tocopherol serum concentration increased significantly in the supplemented group from (A) to (B) (P < 0.001) and from (B) to (C) (P < 0.05). The enzymes glutathione peroxidase (GSH Px) and catalase measured in erythrocytes as well as the serum selenium levels did not show significant differences at any time. A significant increase of CK concentration was observed from (C) to (D) in the supplemented group (P < 0.01) and in the placebo group (P < 0.001). The increase of CK serum concentration is remarkably lower in the supplemented group compared with the placebo group (P < 0.01). It is concluded that endurance training coupled with antioxidant vitamin supplementation reduces blood CK increase under exercise stress.
Animal studies have suggested that CLA, a natural component of meat and dairy products, may confer beneficial effects on health. However, human studies using supplementation with CLA have produced contradictory results. The aim of the present study was to further investigate the effect of CLA supplementation on human body fat, serum leptin, and serum lipids, as well as the incorporation of CLA isomers into serum lipids classes. Sixteen young healthy nonobese sedentary women received 2.1 g of CLA (divided equally between the cis,trans-9,11 and trans,cis-10,12 isomers) daily for 45 d and placebo for 45 d in a randomized double-blind crossover design. Body fat was estimated (by measurement of skinfold thickness at 10 sites), and blood was sampled at the beginning, middle, and end of the entire intervention period; an additional blood sample was obtained 2 wk thereafter. No significant differences in energy, carbohydrate, lipid, or protein intake existed between the CLA and placebo intake periods. No significant differences were found in body fat or serum leptin, TAG, total cholesterol, HDL-cholesterol, and alanine aminotransferase between CLA and placebo. The CLA isomer content of serum TAG, phospholipids, and total lipids increased 2-5 times with CLA supplementation (P < 0.05). In contrast, the CLA content of cholesteryl esters did not change significantly. The period of 2 wk after the end of CLA supplementation was sufficient for its washout from serum lipids. These data indicate that supplementation with 2.1 g of CLA daily for 45 d increased its levels in blood but had no effect on body composition or the lipidemic profile of nonobese women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.