This paper is focused on the discussion of a new double-axle flexible bogie for high-speed trains. The main feature of the flexible bogie is that it consists of two sub-bogies connected with diagonal links. Moreover, an elastic connection between the carriage and both wheelsets is introduced. These features, which help to increase the flexibility of the bogie while passing tracks with a low radius of curvature, are numerically studied in this paper. The results demonstrate the huge potential of the bogie and its ability to travel without significant oscillations at a speed of 432 km/h. Numerical optimization of the bogie’s parameters is performed in order to maximize ride comfort.
An analysis of the results of simulation of electromagnetic processes in the "traction substationcatenary-electric locomotive" system with electric locomotives working in the feed zone in the traction and regenerative braking modes at different distances from the traction substation is carried out. A real time com puting complex was used for simulation. The mutual influence of electric locomotives and dispensing of active and reactive power was reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.