The antennae are a critically important component of the ant's highly elaborated chemical communication systems. However, our understanding of the organization of the sensory systems on the antennae of ants, from peripheral receptors to central and output systems, is poorly understood. Consequently, we have used scanning electron and confocal laser microscopy to create virtually complete maps of the structure, numbers of sensory neurons, and distribution patterns of all types of external sensilla on the antennal flagellum of all types of colony members of the carpenter ant Camponotus japonicus. Based on the outer cuticular structures, the sensilla have been classified into seven types: coelocapitular, coeloconic, ampullaceal, basiconic, trichoid-I, trichoid-II, and chaetic sensilla. Retrograde staining of antennal nerves has enabled us to count the number of sensory neurons housed in the different types of sensilla: three in a coelocapitular sensillum, three in a coeloconic sensillum, one in an ampullaceal sensillum, over 130 in a basiconic sensillum, 50-60 in a trichoid-I sensillum, and 8-9 in a trichoid-II sensillum. The basiconic sensilla, which are cuticular hydrocarbon-receptive in the ant, are present in workers and unmated queens but absent in males. Coelocapitular sensilla (putatively hygro- and thermoreceptive) have been newly identified in this study. Coelocapitular, coeloconic, and ampullaceal sensilla form clusters and show biased distributions on flagellar segments of antennae in all colony members. The total numbers of sensilla per flagellum are about 9000 in unmated queens, 7500 in workers, and 6000 in males. This is the first report presenting comprehensive sensillar maps of antennae in ants.
Ants have well-developed chemosensory systems for social lives. The goal of our study is to understand the functional organization of the ant chemosensory system based on caste- and sex-specific differences. Here we describe the common and sex-specific glomerular organizations in the primary olfactory center, the antennal lobe of the carpenter ant Camponotus japonicus. Differential labeling of the two antennal nerves revealed distinct glomerular clusters innervated by seven sensory tracts (T1-T7 from ventral to dorsal) in the antennal lobe. T7 innervated 10 glomeruli, nine of which received thick axon terminals almost exclusively from the ventral antennal nerve. Coelocapitular (hygro-/thermoreceptive), coeloconic (thermoreceptive), and ampullaceal (CO2-receptive) sensilla, closely appositioned in the flagellum, housed one or three large sensory neurons supplying thick axons exclusively to the ventral antennal nerve. These axons, therefore, were thought to project into T7 glomeruli in all three castes. Workers and virgin females had about 140 T6 glomeruli, whereas males completely lacked these glomeruli. Female-specific basiconic sensilla (cuticular hydrocarbon-receptive) contained over 130 sensory neurons and were completely lacking in males' antennae. These sensory neurons may project into T6 glomeruli in the antennal lobe of workers and virgin females. Serotonin-immunopositive neurons innervated T1-T5 and T7 glomeruli but not T6 glomeruli in workers and virgin females. Because males had no equivalents to T6 glomeruli, serotonin-immunopositive neurons appeared to innervate all glomeruli in the male's antennal lobe. T6 glomeruli in workers and virgin females are therefore female-specific and may have functions related to female-specific tasks in the colony rather than sexual behaviors.
Our data did not reach statistical significance regarding the efficacy of YKS against BPSD; however, YKS improves some symptoms including "agitation/aggression" and "hallucinations" with low frequencies of adverse events. Geriatr Gerontol Int 2017; 17: 211-218.
Amyloid plaques and neurofibrillary tangles (NFTs) are the major pathological characteristics of Alzheimer's disease (AD). NFTs are composed of tubular filaments and paired helical filaments containing polymerized hyperphosphorylated tau protein. Another feature of AD is excessive generation of nitric oxide (NO). Protein disulfide isomerase (PDI) is a chaperon protein located in the endoplasmic reticulum (ER). It was recently reported that NO-induced S-nitrosylation of PDI inhibits its enzymatic activity, leading to the accumulation of polyubiquitinated proteins, and activates the unfolded protein response. In addition, we previously reported the presence of PDI-immunopositive NFTs in AD. Here, we found that protein disulfide isomerase P5 (P5), which is a member of the PDI protein family, was co-localized with tau in NFTs. To our knowledge, this is the first report of P5-immunopositive inclusion in AD. Furthermore, we showed that S-nitrosylated P5 was present and the expression level of P5 was decreased in AD brains compared with that of control brains. We also demonstrated that the knock-down of PDI or P5 by siRNA could affect the viability of SH-SY5Y cells under ER stress. Previously, the observation of S-nitrosylated PDI in AD was reported. NO may inhibit P5 by inducing S-nitrosylation in the same manner as PDI, which inhibits its enzymatic activity allowing protein misfolding to occur in AD. The accumulation of misfolded proteins induces ER stress and may cause apoptosis of neuronal cells through S-nitrosylation and down-regulation of PDI and P5 in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.