Efficient and cost-effective multiplexed detection schemes for proteins in small liquid samples would bring drastic advances to fields like disease detection or water quality monitoring. We present a novel multiplexed sensor with randomly deposited aptamer functionalized gold nanorods. The spectral position of plasmon resonances of individual nanorods, monitored by dark-field spectroscopy, respond specifically to different proteins. We demonstrate nanomolar sensitivity, sensor recycling, and the potential to upscale to hundreds or thousands of targets.
The reactions γp → ηp and γp → η 0 p are measured from their thresholds up to the center-of-mass energy W ¼ 1.96 GeV with the tagged-photon facilities at the Mainz Microtron, MAMI. Differential cross sections are obtained with unprecedented statistical accuracy, providing fine energy binning and full production-angle coverage. A strong cusp is observed in the total cross section for η photoproduction at the energies in the vicinity of the η 0 threshold, W ¼ 1896 MeV (E γ ¼ 1447 MeV). Within the framework of a revised ηMAID isobar model, the cusp, in connection with a steep rise of the η 0 total cross section from its threshold, can only be explained by a strong coupling of the poorly known Nð1895Þ1=2 − state to both ηp and η 0 p. Including the new high-accuracy results in the ηMAID fit to available η and η 0 photoproduction data allows the determination of the Nð1895Þ1=2 − properties.
The TRB3 features four FPGA-based TDCs with < 20 ps RMS time precision between two channels and 256+4+4 channels in total. One central FPGA provides flexible trigger functionality and GbE connectivity including powerful slow control. We present recent users' applications of this platform following the COME&KISS principle:
successful test beamtimes at CERN (CBM), in Jülich and Mainz with an FPGA-based discriminator board (PaDiWa), a charge-to-width FEE board with high dynamic range, read-out of the n-XYTER ASIC and software for data unpacking and TDC calibration in ROOT. We conclude with an outlook on future developments.
Measurement of the ω → π 0 e + e − and η → e + e − γ Dalitz decays with the A2 setup at MAMI The Dalitz decays η → e + e − γ and ω → π 0 e + e − have been measured in the γp → ηp and γp → ωp reactions, respectively, with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the electromagnetic transition form factor of η, Λ −2 η = (1.97 ± 0.11tot ) GeV −2 , is in good agreement with previous measurements of the η → e + e − γ and η → µ + µ − γ decays. The uncertainty obtained in the value of Λ −2 η is lower than in previous results based on the η → e + e − γ decay. The value obtained for the ω slope parameter, Λ −2 ωπ 0 = (1.99 ± 0.21tot) GeV −2 , is somewhat lower than previous measurements based on ω → π 0 µ + µ − , but the results for the ω transition form factor are in better agreement with theoretical calculations, compared to earlier experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.