[1] Accurate ionospheric specification is necessary for improving human activities such as radar detection, navigation, and Earth observation. This is of particular importance in Africa, where strong plasma density gradients exist due to the equatorial ionization anomaly. In this paper the accuracy of three-dimensional ionospheric images is assessed over a 2 week test period (2-16 December 2012). These images are produced using differential Global Positioning System (GPS) slant total electron content observations and a time-dependent tomography algorithm. The test period is selected to coincide with a period of increased GPS data availability from the African Geodetic Reference Frame (AFREF) project. A simulation approach that includes the addition of realistic errors is employed in order to provide a ground truth. Results show that the inclusion of observations from the AFREF archive significantly reduces ionospheric specification errors across the African sector, especially in regions that are poorly served by the permanent network of GPS receivers. The permanent network could be improved by adding extra sites and by reducing the number of service outages that affect the existing sites.
This article presents the first results regarding the investigation of the response of the equatorial ionospheric F region in the African sector during geomagnetic storm periods between April 2000 and November 2007 using GPS‐derived vertical total electron content observed at Libreville, Gabon (0.35°N, 9.67°E, dip latitude −8.05°S). We performed a superposed epoch analysis of the storms by defining the start time of the epoch as the storm onset time. During geomagnetic storms, the altered electric fields contribute significantly to the occurrence of negative and positive ionospheric storm effects. Our results showed that the positive storm effects are more prevalent than the negative storm effects and generally last longer irrespective of storm onset times. Also, the positive storm effects are most pronounced in the daytime than in the premidnight and postmidnight periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.