Glucocorticoid resistance due to mutations in the gene for the glucocorticoid receptor has been suggested to be more common than is thought at present, owing to the relative mildness of its symptoms and the difficulty of its diagnosis. To investigate the prevalence of mutations in the glucocorticoid receptor gene responsible for relative insensitivity to glucocorticoids, we carried out polymerase chain reaction/single-strand conformation analysis of the glucocorticoid receptor gene in a group of 20, otherwise healthy, persons with a reduced response in a dexamethasone suppression test and in 20 controls. We did not find mutations or polymorphisms associated with a reduced sensitivity to glucocorticoids. However, we identified five novel polymorphisms in the gene for the human glucocorticoid receptor, which may be useful in analyzing whether loss of (part of) the glucocorticoid receptor gene plays a role in glucocorticoid-resistant malignancies. Although relative resistance to glucocorticoids seems to be rather frequent in otherwise healthy persons, it is not usually associated with mutations or polymorphisms in the glucocorticoid receptor gene.
A mouse monoclonal antibody against the N-terminal region of human androgen receptor (AR) was used to identify receptors by immunoperoxidase staining in frozen serial sections of skin from scalp, face, limb and genitalia of men and women aged 30-80 years. AR staining was restricted to cell nuclei. In sebaceous glands, AR were identified in basal and differentiating sebocytes. The percentage of receptor-positive basal sebocyte nuclei in the temple/forehead region was greater in males (65%) than in females (29%). AR staining was restricted to the cells of dermal papillae in anagen and telogen hair follicles. The percentage of dermal papillae containing AR was greater in males (58%) than in females (20%). The number of positively stained dermal papillae was lowest in female scalp skin. In 163 hair follicles sectioned, AR were absent from germinative matrix, outer root sheath (including the bulge region), inner root sheath, hair shaft and hair bulb, and from the capillaries present in some large dermal papillae. AR were present in pilosebaceous duct keratinocytes, suggesting that androgens may influence pilosebaceous duct keratinization. AR were also identified in interfollicular epidermal keratinocytes and dermal fibroblasts although, in both cell types, intensity and frequency of staining were greatest in genital skin. AR were identified in luminal epithelial cells of apocrine glands in genital skin and in certain cells of the secretory coils of eccrine sweat glands in all body sites. This study indicates that androgens regulate sebaceous gland and hair growth by acting upon two different types of target cells, the epithelial sebocytes of sebaceous glands and the mesenchymal cells of the hair follicle dermal papilla.(ABSTRACT TRUNCATED AT 250 WORDS)
Steroid receptors have been reported to bind to the nuclear matrix. The nuclear matrix is operationally defined as the residual nuclear structure that remains after extraction of most of the chromatin and all soluble and loosely bound components. To obtain insight in the molecular mechanism of the interaction of steroid receptors with the nuclear matrix, we studied the binding of several deletion mutants of the human androgen receptor (hAR) and the human glucocorticoid receptor (hGR) to the nuclear matrix. Receptor binding was tested for two different nuclear matrix preparations: complete matrices, in which most matrix proteins are retained during the isolation procedure, and depleted matrices, which consist of only a subset of these proteins. The results show that the C-terminal domain of the hAR binds tightly to both depleted and complete matrices. In addition, at least one other domain of the hAR binds to complete matrices but not to depleted matrices. In contrast to the hAR, the hGR binds only to complete matrices. For this interaction both the DNA-binding domain and the C-terminal domain of the hGR are required, whereas the N-terminal domain is not. We conclude that specific protein domains of the hAR and the hGR are involved in binding to the nuclear matrix. In addition, our results indicate that the hAR and the hGR are attached to the nuclear matrix through different molecular interactions.
There is no obvious regulation of the number of glucocorticoid receptors by plasma cortisol concentrations in vivo. The decreased affinity of the glucocorticoid receptor together with the negative correlation between hyperthermia and the number of glucocorticoid receptors in patients with sepsis or septic shock suggest that hypothalamic-pituitary-adrenal axis activation during critical illness is accompanied by peripheral adaptation in glucocorticoid receptor number and affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.