To date, silicon backplane spatial light modulators have been characterized by poor-quality mirrors. Hillock formation during metal sintering has been identified as the source of this problem. Here hillock elimination is achieved by constraining the metal with a low-temperature plasma-enhanced chemicalvapor deposition silicon dioxide coating. A double-layer metallization procedure increases the silicon area available for circuitry and improves the mirror fill factor. Second-layer metal mirrors require a flat, intermediate dielectric substrate. Chemical-mechanical polishing is demonstrated to provide the flatness necessary to achieve high optical quality.
The performance of liquid-crystal-over-silicon spatial light modulators has advanced rapidly in recent years. Most progress has centered around new device designs with increased bandwidth. In this paper we report on a number of techniques to improve the optical quality; these have applications in both current and future devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.