Glucose homeostasis is controlled by endocrine pancreatic cells, and any pancreatic disturbance can result in diabetes. Because 8% to 12% of diabetic pregnant women present with malformed fetuses, there is great interest in understanding the etiology, pathophysiological mechanisms, and treatment of gestational diabetes. Hyperglycemia enhances the production of reactive oxygen species, leading to oxidative stress, which is involved in diabetic teratogenesis. It has also been suggested that maternal diabetes alters embryonic gene expression, which might cause malformations. Due to ethical issues involving human studies that sometimes have invasive aspects and the multiplicity of uncontrolled variables that can alter the uterine environment during clinical studies, it is necessary to use animal models to better understand diabetic pathophysiology. This review aimed to gather information about pathophysiological mechanisms and fetal outcomes in streptozotocin-induced diabetic rats. To understand the pathophysiological mechanisms and factors involved in diabetes, the use of pancreatic regeneration studies is increasing in an attempt to understand the behavior of pancreatic beta cells. In addition, these studies suggest a new preventive concept as a treatment basis for diabetes, introducing therapeutic efforts to minimize or prevent diabetes-induced oxidative stress, DNA damage, and teratogenesis.
The presence of diabetes in pregnancy leads to hormonal and metabolic changes making inappropriate intrauterine environment, favoring the onset of maternal and fetal complications. Human studies that explore mechanisms responsible for changes caused by diabetes are limited not only for ethical reasons but also by the many uncontrollable variables. Thus, there is a need to develop appropriate experimental models. The diabetes induced in laboratory animals can be performed by different methods depending on dose, route of administration, and the strain and age of animal used. Many of these studies are carried out in neonatal period or during pregnancy, but the results presented are controversial. So this paper, addresses the review about the different models of mild diabetes induction using streptozotocin in pregnant rats and their repercussions on the maternal and fetal organisms to propose an adequate model for each approached issue.
To evaluate the effect of swimming in pregnant rats born with intrauterine growth restriction (IUGR) and their offspring, IUGR rats were obtained using the streptozotocin-induced severe diabetic (SD) rats. In this study, the nondiabetic parental generation presented 10 rats and diabetic parental generation presented 116 rats. Of these, the mated nondiabetic female rats were 10 and the number of diabetic rats was 45. In relation to term pregnancy, there were 10 animals in the nondiabetic group and 15 rats in the diabetic group. In the offspring of SD rats (IUGR group), 43 females were classified as small for pregnancy age, 19 rats were classified as appropriate for pregnancy age, and 0 female was classified as large for pregnancy age. The nondiabetic and SD pregnant rats generated offspring with appropriate (control [C]) and small (IUGR) weight for pregnancy age, respectively. At adult life, the C group was maintained as nonexercised C group and IUGR rats were distributed into 2 subgroups, namely, nonexercised (IUGR) and exercised (IUGRex). The rate of mated rats in the IUGR group was reduced compared to the C group. During pregnancy, the IUGR rats presented hyperinsulinemia, impaired reproductive outcomes, decreased body weight, hypertriglyceridemia, and hyperlactacidemia. The IUGRex presented reduced insulin and triglyceride levels. Thus, swimming improved lipid metabolism and increased insulin sensitivity. However, the offspring showed retarded growth, reinforcing the need to stimulate the exercise practice in women under supervision with different professional expertise to promote appropriate gestational conditions and improve perinatal outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.