This investigation was carried out to assess the behaviours of Cold Briquetted Iron (CBI) when exposed to increasing temperature changes up to its complete melting. High-temperature behaviours and melting characteristics of CBI were studied. Ground as-received CBI briquette and those heated to temperatures ranging from 500°C to 1000°C were sieved to maximum of 30 microns diameter size and their room-temperature x-ray diffraction (XRD) measured. CBI was found to contain among others, α-iron, cementite and silica phases. Cementite was found to commence decomposition at 500°C - 600°C and completed by 700°C with conspicuous increase in the concentration of α-iron phase. Only α-iron and silica phases were sustained in CBI at temperatures above 700°C. In an inert atmosphere, it was discovered that CBI melted over a temperature range of 1527.3°C to 1536.96°C accompanied by an irrecoverable weight loss of 9.6 wt.% of the starting material. It was concluded that melting CBI would require charging along it appropriate fluxes to take care of the unreduced iron oxide and incorporation into facility for melting CBI an effective deslagging mechanism to remove unavoidable possible voluminous slag that would be formed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.