Biorefineries convert biomass into bio-based products, which have the potential to replace typical products produced by petroleum refineries. They provide a technology platform to reduce anthropogenic greenhouse gas emissions, increase security of supply and reduce the dependency on crude oil. The biorefinery concept presented in this paper focuses on a combination of (1) organosolv fractionation to produce carbohydrates from lignocellulosic biomass and (2) the furan technology to convert carbohydrates into polyethylene furanoate(PEF), a bio-based alternative to polyethylene terephthalate(PET), and furfuryl ethyl ether (FEE), a bio-based transportation fuel component. The goal of this paper is to determine the mass and energy balances of the production of PEF and FEE from lignocellulosic biomass and indicate the benefits, as well as potential bottlenecks in the coupling of organosolv and furan chemistry as a biorefinery concept. Three cases are defined, modeled and analyzed, each focusing on a different approach to combine the organosolv and furan conversion technologies and determine the possibility and degree of integration. Modeling results based on experimental data and expert judgments show that wheat straw, as an example of lignocellulosic biomass, can be converted into PEF and FEE at yields between 20 and 40 w/w%, based on total input, while energetic efficiencies are between 30 and 40%. This is comparable or even better compared to other upcoming bio-based processes, e.g. 15–35% yield for second generation bio-ethanol production and 25–50% energy efficiency. The conclusion is that in each of the three cases presented bio-based fuels and plastics can be produced via the furan pathway at efficiencies that constitute a viable option from a technological point of view
A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 h/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 h/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 h/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.