The porcine A-FABP gene (FABP4) was isolated and sequenced to study the role of A-FABP in the differentiation of intramuscular fat (IMF) accretion in pigs. The coding sequence of the porcine A-FABP gene is highly conserved across human, mouse, and rat. Moreover, all the functionally important amino acids are conserved. This high similarity extends into the first 270 bp of the 5' upstream region. Within this region, a 56-bp nucleotide sequence was completely identical with the corresponding sequence in the mouse A-FABP gene, which contains the transcription factor binding sites for C/EBP and AP-1, and is implicated in the differentiation-dependent regulation of A-FABP. The A-FABP gene was assigned to porcine Chromosome (Chr) 4 by a porcine sequence-specific PCR on a cell hybrid panel, fully consistent with comparative mapping data with human and mouse. In the first intron of the porcine A-FABP gene, a microsatellite sequence was detected that was polymorphic for all six pig breeds tested. This genetic variation within the A-FABP gene was associated with differences in IMF content and possibly growth in a Duroc population, whereas no effect on backfat thickness and drip loss of the meat were detected. A considerable and significant contrast of approximately 1% IMF was observed between certain genotype classes. We conclude that the A-FABP locus is involved in the regulation of intramuscular fat accretion in Duroc pigs.
Ara h 1 aggregates formed by boiling were morphologically distinct from those formed by roasting and had lower allergenic activity. Glycation had no additional effect on Ara h 1 allergenicity compared with heating alone. Taken together with published data on the loss of Ara h 2/6 from boiled peanuts, this supports the hypothesis that boiling reduces the allergenicity of peanuts.
Extensive heating reduced the degranulation capacity of Ara h 2/6 but significantly increased the degranulation capacity of Ara h 1. This observation can have important ramifications for component-resolved approaches for diagnosis and demonstrates the importance of investigating the degranulation capacity in addition to IgE reactivity when assessing the effects of food processing on the allergenicity of proteins.
BackgroundPeanut allergy is one of the most common and severe food allergies, and processing is known to influence the allergenicity of peanut proteins. We aimed to establish the effect of heating and glycation on the IgE-binding properties and biological activity of 2S albumins (Ara h 2/6) from peanut.Methodology/Principal FindingsNative Ara h 2/6 was purified from raw peanuts and heated in solution (15 min, 110°C) in the presence or absence of glucose. Ara h 2 and 6 were also purified from roasted peanut. Using PBMC and sera from peanut-allergic patients, the cellular proliferative potency and IgE reactivity (reverse EAST inhibition) and functionality (basophil degranulation capacity) of allergens were assessed. Heating Ara h 2/6 at 110°C resulted in extensive denaturation, hydrolysis and aggregation of the protein, whilst Ara h 2 and 6 isolated from roasted peanut retained its native conformation. Allergen stimulation of PBMC induced proliferation and Th2 cytokine secretion which was unaffected by thermal processing. Conversely, IgE reactivity and functionality of Ara h 2/6 was decreased by heating. Whilst heating-glycation further reduced the IgE binding capacity of the proteins, it moderated their loss of histamine releasing capacity. Ara h 2 and 6 purified from roasted peanut demonstrated the same IgE reactivity as unheated, native Ara h 2/6.Conclusions/SignificanceAlthough no effect of processing on T-cell reactivity was observed, heat induced denaturation reduced the IgE reactivity and subsequent functionality of Ara h 2/6. Conversely, Ara h 2 and 6 purified from roasted peanut retained the structure and IgE reactivity/functionality of the native protein which may explain the allergenic potency of this protein. Through detailed molecular study and allergenicity assessment approaches, this work then gives new insights into the effect of thermal processing on structure/allergenicity of peanut proteins.
Nasal congestion is an important symptom in nasal pathology and can be defined as an objective restriction of nasal cavity airflow because of mucosal pathology and/or increased mucus secretion (excluding anatomical variants). Using the new Grading Recommendations Assessment, Development and Evaluation system, evidence‐based recommendations are made that will encompass different clinical questions regarding diagnostic modalities of nasal congestion: (i) their usefulness in assessment of presence and severity of congestion; (ii) their usefulness in assessment of etiological pathology responsible for congestion; and (iii) their usefulness in follow up and treatment effectiveness evaluation of nasal congestion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.