During 2006 and 2007 in the region of Sumaré, state of São Paulo, Brazil, surveys were done on tomato (Solanum lycopersicum L.) virus diseases in three open field-grown crops. The data revealed low incidence (0.25 to 3.42%) of randomly distributed plants exhibiting interveinal chlorosis and some necrosis on the basal leaves. Symptoms were only observed on old fruit-bearing plants. Preliminary analysis of thin sections of symptomatic leaves from one plant by transmission electron microscopy revealed the presence of aggregates of thin, flexible, and elongated particles in some phloem vessels, suggesting infection with a member of the genus Crinivirus, family Closteroviridae. Total RNA was extracted separately from leaves of 10 symptomatic plants and used for one-step reverse transcription (RT)-PCR using the HS-11/HS-12 primer pair, which amplifies a fragment of 587 bp from the highly conserved region of the heat shock protein (HSP-70) homolog gene reported for Tomato infectious chlorosis virus (TICV) and Tomato chlorosis virus (ToCV) (1). The RT-PCR product was subsequently tested by nested-PCR for single detection of TICV and ToCV using primer pairs TIC-3/TIC-4 and ToC-5/ToC-6, respectively (1). Only one fragment of approximately 463 bp was amplified from 7 of the 10 plants with the primer pair specific for ToCV. No amplification was obtained with the primers specific for TICV. Two amplicons of 463 bp were purified and directly sequenced in both directions. Sequence comparisons of the 463-bp consensus sequence (GenBank Accession No. EU868927) revealed 99% identity with the reported sequence of ToCV from the United States (GenBank Accession No. AY903448) (3). Virus-free adults of Bemisia tabaci biotype B confined on symptomatic tomato leaves for a 24-h acquisition access period were able to transmit the virus to healthy tomato plants, which reproduced the original symptoms on the bottom leaves 65 days after inoculation under greenhouse conditions. Infection from transmission was confirmed by RT-PCR using the HS-11/HS-12 primer pair. In addition to B. tabaci biotype B, the greenhouse whitefly, Trialeurodes vaporariorum, has also been reported as a vector of ToCV, although it is less efficient than the B. tabaci biotype B in transmission of this virus (4). T. vaporariorum, which was previously considered limited to greenhouses, was recently reported in tomato and green bean (Phaseolus vulgaris L.) crops under field conditions in São Paulo State (2). Therefore, it might also contribute to the spread of ToCV in tomato crops in São Paulo. To our knowledge, this is the first report of ToCV in Brazil and South America. References: (1) C. I. Dovas et al. Plant Dis.86:1345, 2002. (2) A. L. Lourenção et al. Neotrop. Entomol. 37:89, 2008. (3) W. M. Wintermantel et al. Arch. Virol. 15:2287, 2005. (4) W. M. Wintermantel and G. C. Wisler. Plant Dis. 90:814, 2006.
Brazil produced 330,000 metric tons of melons in 2005, principally in the Northeast region where one of the most important melon pathogens is the powdery mildew fungus Podosphaera xanthii. The disease is controlled mainly by incorporating single dominant resistance genes into commercial hybrids. We report on linkage analysis of the Pm-1 resistance gene, introgressed from the AF125Pm-1 Cantalupensis Charentais-type breeding line into the yellowfleshed melon (Group Inodorus) breeding line AF426-S by backcrossing to produce the resistant line AF426-R, and the amplified fragment length polymorphism (AFLP) marker M75/H35_155 reported to be polymorphic between AF426-S and AF426-R. Segregation analysis of M75/H35_155 using a backcross population of 143 plants derived from [AF426-R x AF426-S] x AF426-S and screened for resistance to P. xanthii race 1 produced a recombination frequency of 4.9%, indicating close linkage between M75/H35_155 and Pm-1. Using the same segregating population, the M75/H35_155 marker had previously been reported to be distantly linked to Prv 1 , a gene conferring resistance to papaya ringspot virus-type W. Since M75/H35_155 is linked to Prv 1 at a distance of 40.9 cM it is possible that Pm-1 and Prv 1 are also linked.
Papaya ringspot virus-type W (PRSV-W) is the most prevalent and important viral pathogen of cucurbits in Brazil. It can be effectively controlled by the incorporation of genetic resistance into susceptible melon cultivars. The present study identified amplified fragment length polymorphic (AFLP) markers linked to the PRSV-W resistance Prv 1 allele. The susceptible yellow-fleshed melon-breeding line AF426 prv1 and its nearly isogenic-resistant line AF426 Prv1 , which carries the Prv 1 allele resident in the Indian cantaloupe U.S. Plant Introduction (PI) 180280, were screened for AFLP marker polymorphisms. Of 30 251 AFLP loci, only three were polymorphic between the nearly isogenic lines. Segregation analyses for these three polymorphic markers and the Prv 1 allele using a BC 1 population of 197 plants indicated close linkage (0.5% recombination frequency) between marker EK190 (HindIII-CGA and MseI-GTG; 190 bp) and Prv 1 . Thus, EK190 might be a useful marker in breeding programmes aiming to develop melon cultivars resistant to PRSV-W. The other two markers are closely linked to each other, but distantly linked to Prv 1 .
This work aimed to characterize the isolates of Streptomyces, responsible for deep common scab symptoms in potato, according to morphological and physiological criteria; to evaluate the resistance of potato cultivars to the disease and the aggressiveness of bacterium isolates. The Streptomyces isolates presented gray coloration on yeast extract and malt medium and spiral spore chains, produced on aerial hyphae. Production of melanina occurred in tirosine-agar medium and the utilization of eight recommended carbon sources. These properties correspond to the S. scabies species. Healthy potato seeds of six cultivars were planted in substratum infested with six isolates of S. scabies separately, and the plants cultivated in plastic bags and Fischer, I.H.; Teixeira, A.P.M.; Toffano, L.; Garcia, E.O. Reaction of potato cultivars to Streptomyces scabies, causal agent of deep common scab.
Camargo pela orientação, apoio, compreensão e dedicação durante estes anos. Aos professores do Departamento de Fitopatologia da ESALQ/USP pela oportunidade de aprendizado, sugestões e auxílio durante a elaboração deste trabalho. À empresa Sakata Seed Sudamerica por todo apoio estrutural e científico dispensado. Aos meus pais Edi e Lisa e meus irmãos Pedro, Cátia e Rafa por todo carinho, apoio, compreensão e paciência. Ao Marcelo pelo companheirismo, respeito, atenção e paciência. Aos amigos Alessandra, Kátia, Rodrigo, Patrícia e Maria Teresa pelo auxílio técnico-científico durante todo o trabalho.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.