We report the spontaneous formation of uniformly distributed arrays of "tips" (tall conical hillocks) upon oxidation of palladium (Pd) thin films. The formation of the palladium oxide tips depended on the thickness and granularity of the Pd film and on annealing and oxidation conditions. As the Pd film thickness increased from 40 to 200 nanometers, the average height of the tips increased from 0.5 to 1.2 micrometers, their height distribution became broader, and their density decreased from 55 x 10(6) to 12 x 10(6) per square centimeter. Enhanced photoelectron emission from locations corresponding to the tips suggests their possible use in field emission applications.
A prominent theme in inorganic materials research is the creation of uniformly flat thin films and heterostructures over large wafers, which can subsequently be lithographically processed into functional devices. This letter proposes an approach that will lead to thin film topographies that are directly counter to the above-mentioned philosophy. Recent years have witnessed considerable research activity in the area of self-assembly of materials, stimulated by observations of self-organized behavior in biological systems. We have fabricated uniform arrays of nonplanar surface features by a spontaneous assembly process involving the oxidation of simple metals, especially under constrained conditions on a variety of substrates, including glass and Si. In this letter we demonstrate the pervasiveness of this process through examples involving the oxidation of Pd, Cu, Fe, and In. The feature sizes can be controlled through the grain size and thickness of the starting metal thin film. Finally, we demonstrate how such submicron scale arrays can serve as templates for the design and development of self-assembled, nanoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.