It is known from experiments that the radiated x-ray energy appears to exceed the calculated implosion kinetic energy and Spitzer resistive heating ͓C. Deeney et al., Phys. Rev. A 44, 6762 ͑1991͔͒ but possible mechanisms of the enhanced x-ray production are still being discussed. Enhanced plasma heating in smalldiameter wire arrays with decreased calculated kinetic energy was investigated, and a review of experiments with cylindrical arrays of 1-16 mm in diameter on the 1 MA Zebra generator is presented in this paper. The implosion and x-ray generation in cylindrical wire arrays with different diameters were compared to find a transition from a regime where thermalization of the kinetic energy is the prevailing heating mechanism to regimes with other dominant mechanisms of plasma heating. Loads of 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The x-ray power falls in 1-2 mm loads which can be linked to the lower efficiency of plasma heating with the lack of kinetic energy. The electron temperature and density of the pinches also depend on the array diameter. In small-diameter arrays, 1-3 mm in diameter, ablating plasma accumulates in the inner volume much faster than in loads of 12-16 mm in diameter. Correlated bubblelike implosions were observed with multiframe shadowgraphy. Investigation of energy balance provides evidence for mechanisms of nonkinetic plasma heating in Z pinches. Formation and evolution of bright spots in Z pinches were studied with a time-gated pinhole camera. A comparison of x-ray images with shadowgrams shows that implosion bubbles can initiate bright spots in the pinch. Features of the implosions in smalldiameter wire arrays are discussed to identify mechanisms of energy dissipation.
A compact focusing crystal spectrometer based on the von Hamos scheme is described. Cylindrically curved mica and graphite crystals with a radius of curvature of Rϭ20 mm are used in the spectrometer. A front illuminated charge-coupled device ͑CCD͒ linear array detector makes this spectrometer useful for real-time spectroscopy of laser-produced plasma x-ray sources within the wavelength range of ϭ1.8-10 Å. Calibration of crystals and the CCD linear array makes it possible to measure absolute photon fluxes. X-ray spectra in an absolute intensity scale were obtained from Mg, Ti, and Fe laser-produced plasmas, with a spectral resolution /␦ ϭ800-2000 for the mica and /␦ϭ200-300 for graphite crystal spectrometers. The spectrometer has high efficiency in a wide spectral range, it is compact ͑40 mm diam, 150 mm length͒, easy to align, and flexible. The spectrometer is promising for absolute spectral measurements of x-ray radiation of low-intensity sources ͑femtosecond laser-produced plasmas, micropinches, electron-beam-ion-trap sources, etc.͒.
Implosions in starlike triple and quadruple wire arrays were investigated in a 1 MA Zebra generator. Implosion in these loads is directed along the rays of the star and cascades from wire to wire to the center. Shadowgraphy shows improved homogeneity of imploding plasma and mitigation of instabilities. Despite the low azimuthal symmetry, starlike wire arrays produce a stable x-ray pulse with the highest peak power of >0.4 TW and the shortest duration of 8-12 ns among different types of tested loads. This can be linked to stabilization of instabilities due to the multiple nesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.