Thin nanocomposite films composed of ZnO and SnO2 at 0.5–5 mol.% concentrations were synthesized by a new solid-phase low-temperature pyrolysis under the developed protocols. This hetero-oxide material was thoroughly studied by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) techniques to be compared with electrical and gas-sensing properties. We have found that the films have a poly-nanocrystal structure of ZnO and SnO2 crystals with characteristic grain sizes at 10–15 nm range. When comparing the chemiresistive response of the films with varied tin dioxide content, the sample of Sn:Zn optimum ratio taken as 1:99 yields 1.5-fold improvement upon to 5–50 ppm NO2 exposure at 200 °C. We argue that these remarkable changes have matured from both a reducing the intergrain potential barrier down to 0.58 eV and increasing the concentration of anionic vacancies at this rational composite. The results demonstrate that solid-phase low-temperature pyrolysis is a powerful technique for adjusting the functional gas-sensing properties of hetero-oxide film via modifying the ratio of the oxide components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.