[1] The Phoenix and Mars Reconnaissance Orbiter (MRO) missions collaborated in an unprecedented campaign to observe the northern polar region summer atmosphere throughout the Phoenix mission (25 May to 2 November 2008; L s = 76°-150°) and slightly beyond (∼L s = 158°). Five atmospherically related campaigns were defined a priori and were executed on 37 separate Martian days (sols). Phoenix and MRO observed the atmosphere nearly simultaneously. We describe the observation strategy and history, the participating experiments, and some initial results. We find that there is general agreement between measurements from different instruments and platforms and that complementary measurements provide a consistent picture of the atmosphere. Seasonal water abundance behavior matches with historical measurements. Winds aloft, as measured by cloud motions, showed the same seasonally consistent, diurnal rotation as the winds measured at the lander, during the first part of the mission (L s = 76°-118°). A diurnal cycle recorded from L s ∼ 108.3°-109.1°, in which a dust front was approaching the Phoenix Lander, is examined in detail. Cloud heights measured on subsequent orbits showed that in areas of active lifting, dust can be lofted quite high in the atmosphere, doubling in height over 2 h. The combination of experiments also revealed that there were discrete vertical layers of water ice and dust. Water vapor column abundances compared to near-surface water vapor pressure indicate that water is not well mixed from the surface to a cloud condensation height and that the depth of the layer that exchanges diurnally with the surface is 0.5-1 km.
The heavy water isotope, D 2 O, is several orders of magnitude less abundant.) Also on Mars, it is expected that the HDO/H 2 O isotopic ratio is an important marker for atmospheric water vapor
Gravity waves are one way Mars’s lower atmospheric weather can affect the circulation and even composition of Mars’s middle and upper atmosphere. A recent study showed how on-planet observations near the center of the 15 μm CO2 band by the A3 channel (635–665 cm−1) of the Mars Climate Sounder on board the Mars Reconnaissance Orbiter could sense horizontally short, vertically broad gravity waves at ≈25 km above the surface by looking at small-scale radiance variability in temperature-sensitive channels. This approach is extended here to two additional channels closer to the wings of the 15 μm CO2 band, A1 (595–615 cm−1) and A2 (615–645 cm−1), to sense gravity waves throughout the lower atmosphere. Using information from all three channels demonstrates that gravity-wave activity in Mars’s lowermost atmosphere is dominated by orographic sources, particularly over the extremely rough terrain of Valles Marineris. Much of this orographic population is either trapped or filtered in the lowest two scale heights, such that variations in filtering and nonorographic sources shape the gravity-wave population observed at 25 km above the surface. During global dust storms, however, gravity-wave activity in the first scale height decreases by approximately a factor of 2, yet trapping/filtering of what activity remains in the tropics substantially weakens. Exceptionally high radiance variability at night in the tropics during the less dusty part of the year is the result of observing mesospheric clouds rather than gravity waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.