This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash, collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
[1] A three-dimensional mixture theory model for flow and sediment transport in the seafloor boundary layer, SedMix3D, simulated the flow over and the resulting sediment entrainment and evolution of rippled beds. SedMix3D treats the fluid-sediment mixture as a continuum of varying density and viscosity with the concentration of sediment and velocity of the mixture simulated by the Navier-Stokes equations coupled with a sediment flux equation for the mixture. Model validation was performed by comparing simulated time-dependent flow quantities and bulk flow statistics with measurements obtained in the laboratory under scaled forcing conditions. Two-dimensional planes extracted from a three-dimensional simulation were compared to observations made using planar Particle Image Velocimetry (PIV) in a laboratory flume. The simulated results of time-averaged velocities and time-dependent quantities of vorticity and swirling strength were in good agreement with the observations. The model was used to analyze the three-dimensionality of vortex formation and ejection produced by oscillatory flow over vortex ripples, a process that cannot be observed in the laboratory with planar PIV measurements. The three-dimensional simulated results showed that the swirling strength varied significantly in the cross-flow direction, indicating that the vortices formed and dissipated non-uniformly due to random fluctuations. Subsequently, an order of magnitude difference in offshore sediment flux was observed using two different methods to calculate sediment fluxes (spatially averaging and at a point). The results suggest that while a two-dimensional plane may be sufficient to examine the general hydrodynamics over ripples, three-dimensional analysis is necessary for a complete understanding of sediment transport.
Accurately assessing the response of sediments to oscillatory flows requires high-resolution fluid velocity and sediment transport measurements at the fluid–sediment interface. Fluid and sediment grain velocities were measured simultaneously with combined particle image and tracking velocimetry under oscillatory flows over movable sand ripples. Three high-speed cameras equipped with varying optical filters were used to distinguish between fluorescent fluid tracers and the grains, from which the fluid and grain velocities were determined, respectively. Individual grains were tracked during transport to determine velocities and trajectories. Sediment grains were first mobilized by a vortex impacting the bed during flow reversal and suspended into the water column just prior to vortex ejection from the ripple crest, similar to previous observations. During phases of maximum flow velocity, additional grains were mobilized by the shear stress and were subsequently suspended. The flow reversed and similar observations were made in the opposite direction. Consequently, four peaks in suspended sediment concentration were observed throughout the flow cycle, consistent with previous observations. However, some previous researchers attributed peaks in suspended sediment concentration occurring during phases of maximum flow velocity to sediment-laden vortices that were shed from adjacent ripples. The measured sediment grain velocities were of similar magnitude and phase to the near-bed fluid velocities when the grains were being advected with the flow. Measurements of suspended sediment concentration agreed well with semiempirical formulations having an average root-mean-square deviation of approximately 4 × 10−5 m3 m−3. Predictions of settling velocity also compared well with the laboratory estimates, agreeing to within 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.