In this work, enhanced thermal data processing is developed with experimental procedures, improving visualization algorithm for sub-surface defect detection on industrial composites. These materials are prone to successful infrared nondestructive investigation analyses, since defects are easily characterized by temperature response under thermal pulses with reliable results. Better defect characterization is achieved analyzing data with refined processing and experimental procedures, providing detailed contrasts maps where defects are better distinguished. Thermal data are analyzed for different CFRP specimens with artificial defects and experimental procedures are verified on real structural aeronautical component with internal anomalies due to impact simulation. A better computation method is found to be useful for simultaneous defect detection by means of automatic mapping of absolute contrast, optimized to identify defect boundaries.
The present work introduces a different data processing strategy, proposed in order to improve sub-surface defect detection on industrial composites; in addition, a resume of thermal data processing with most common algorithms in literature is presented and applied with new data. A deep comparison between the common absolute contrast, DAC, PCT, TSR and derivative methods and a new proposed contrast mapping procedure is implemented. Thermographic inspection was done in reflection mode on a Glass Fiber Reinforced Plastic plate, with flat bottom hole defects. Thermal data computation method is found to be critical for simultaneous defect detection and automatic mapping, optimized to identify defect boundaries at specific depth, with help of accurate image processing, implemented in a Matlab GUI for a reliable and rapid characterization of internal damage. The new processing approach, the Local Boundary Contrast method, elaborates different contrast maps and facilitates recognition of damage extension. Tanimoto criterion and the signal-to-noise ratio method were applied as a criterion to assess defect detectability of various processing methods.
Methods and techniques presented in literature for studying the fatigue behaviour of materials involve expensive, long lasting experimental campaigns and often a data analysis providing any information about damage localisation and occurrence. To avoid a time-consuming mechanical characterisation and to provide more information about where and when damage is occurring, the full-field experimental techniques such as infrared thermography allows the assessment of parameters that are related to the energy conversion to heat. In this work, the relationship between these thermal parameters (thermal methods) sentinels of the energy dissipated per cycle and the energy absorbed in every cycle is presented for the C45 steel undergoing stepwise loading fatigue tests.
The present paper is focused on full-field experimental monitoring procedures to be employed during HCF fatigue testing on two series of CFRP open hole samples. Two different experimental methodologies based on thermographic techniques and displacement measurements with Digital Image Correlation (DIC) analysis are employed for damage settlement and evolution to be detected up to failure, together with correspondent compliance analysis. Combined monitoring approaches, based on thermo-elastic and dissipative phenomena, together with stiffness properties variations, are claimed to offer precise damage state localization during tests in real time; in addition, DIC analysis is performed during low-frequency fatigue cycle is studied for better failure prediction and damage location. The thermal parameters and experimental compliance correlation seem to indicate similar signal variation during damage progress and after proper data elaboration; contemporaneous raw thermal measurements in critical zones of specimens under fatigue life offer a kind of delamination recognition at specific layer interface and location, as well as propagation before final failure. Sample under tensile load on the other hand reveal delaminations indirectly on the surface. In addition, non-destructive thermographic and ultrasound tests are performed at regular intervals during fatigue life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.