Path prediction is the only way that an active safety system can predict a driver's intention. In this paper, a modelbased description of the traffic environment is presented-both vehicles and infrastructure-in order to provide, in real time, sufficient information for an accurate prediction of the egovehicle's path. The proposed approach is a hierarchical-structured algorithm that fuses traffic environment data with car dynamics in order to accurately predict the trajectory of the ego-vehicle, allowing the active safety system to inform, warn the driver, or intervene when critical situations occur. The algorithms are tested with real data, under normal conditions, for collision warning (CW) and vision-enhancement applications. The results clearly show that this approach allows a dynamic situation and threat assessment and can enhance the capabilities of adaptive cruise control and CW functions by reducing the false alarm rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.