The paper discusses the concept, design and final results from the 'Ultra Boost for Economy' collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry-and academiawide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles.In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO 2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization. In order to do this vehicle modelling was employed to set part-load operating points representative of a target vehicle and to provide weighting factors for those points. The engine was sized by using the fuel consumption improvement targets and a series of specification steps designed to ensure that the required full-load performance and driveability could be achieved.The engine was designed in parallel with 1-D modelling which helped to combine the various technology packages of the project, including the specification of an advanced charging system and the provision of the necessary variability in the valvetrain system. An advanced intake port was designed in order to ensure the necessary flow rate and the charge motion to provide fuel mixing and help suppress knock, and was subjected to a full transient CFD analysis. A new engine management system was provided which necessarily had to be capable of controlling many functions, including a supercharger engagement clutch and full bypass system, direct injection system, port-fuel injection system, separately-switchable cam profiles for the intake and exhaust valves and wide-range fast-acting camshaft phasing devices.
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.The Ultraboost engine is an inline-4 downsized, highly boosted prototype DISI engine designed to achieve a 35% reduction in CO 2 emissions whilst maintaining performance of a production V8. A series of 14 fuel formulations were tested to probe engine response to various fuel properties. This paper presents results from a 7 fuel RON and MON decorrelated matrix at four high-load engine conditions. The K-value was found to be negative at all engine conditions; fuels of higher sensitivity were found to yield improved engine performance. Furthermore, in-cylinder experimental data from high load knocking conditions with a single standard octane fuel were used to simulate the K-value; a similar trend between theory and experiment was observed.
Increasingly strict government emissions regulations in combination with consumer demand for high performance vehicles is driving gasoline engine development towards highly downsized, boosted direct injection technologies. In these engines, fuel consumption is improved by reducing pumping, friction and heat losses, yet performance is maintained by operating at higher brake mean effective pressure. However, the in-cylinder conditions of these engines continue to diverge from traditional naturally aspirated technologies, and especially from the Cooperative Fuels Research engine used to define the octane rating scales. Engine concepts are thus key platforms with which to screen the influence of fundamental fuel properties on future engine performance.'ULTRABOOST', a collaborative research project which is co-funded by the Technology Strategy Board (TSB), the UK's innovation agency, is a downsized, highly boosted, 2.0L in-line 4 cylinder prototype engine, designed to achieve 35% CO 2 emissions reduction without compromising the performance of a 5.0L V8 naturally aspirated production engine. To probe engine response to fuel, a matrix of 14 formulations was tested at several engine conditions. This is the first in a series of fuel related papers and focuses on the engine's response to the research octane number (RON). The knock limited spark advance was determined for a series of fuels with RON varying from 95 to 112; octane was shown to provide 5 or 10° crank angle advance in knock limited spark advance at 2000 and 3000 rpm, respectively. This study demonstrates that fuel octane quality continues to be important for the performance of emerging downsized engine technologies. Furthermore, the trend for continued engine downsizing will increase the potential performance benefit associated with knock resistant fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.