Applicability of the finite element method (FEM) in predicting the effective transverse thermal conductivity of fiber reinforced composites is systematically studied. Four different boundary condition combinations representing the periodicity of the temperature field are employed for ideal composites having perfect bond between fiber and matrix. Both circular and square cross-section fibers are studied. Comparisons of present FEM results with available analytical and experimental results reveal that periodicity realized by prescribed temperatures yields most accurate results up to high fiber volume fractions. In composites with interfacial thermal barrier resistance the effective conductivity varies in a wide range depending on the interfacial conductance between fiber and matrix. Best fit with available experimental results is obtained for both circular and square fibers when the dimensionless interfacial conductance is about 30. By employing the modeling practice found successful in the cases for which analytical andlor experimental results exist, some typical combined effects of partial debonding and matrix cracking, for which no such results exist, are finally considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.